메뉴 건너뛰기




Volumn 31, Issue 1, 2017, Pages 17-35

A spatiotemporal indexing approach for efficient processing of big array-based climate data with MapReduce

Author keywords

array based; big climate data; climate change; Hadoop MapReduce; HDFS; NASA MERRA; Spatiotemporal index

Indexed keywords

CLIMATE CHANGE; CLIMATE MODELING; DATA PROCESSING; PARALLEL COMPUTING; SPATIOTEMPORAL ANALYSIS;

EID: 84954206400     PISSN: 13658816     EISSN: 13623087     Source Type: Journal    
DOI: 10.1080/13658816.2015.1131830     Document Type: Article
Times cited : (52)

References (27)
  • 2
  • 3
    • 83155182857 scopus 로고    scopus 로고
    • Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, ACM
    • J.B.Buck, et al., 2011. Scihadoop:array-based query processing in hadoop. In:Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis. ACM, 66.
    • (2011) Scihadoop: array-based query processing in hadoop , pp. 66
    • Buck, J.B.1
  • 6
    • 37549003336 scopus 로고    scopus 로고
    • MapReduce: simplified data processing on large clusters
    • J.Dean, and S.Ghemawat, 2008. MapReduce:simplified data processing on large clusters. Communications of the ACM, 51 (1), 107–113. doi:10.1145/1327452
    • (2008) Communications of the ACM , vol.51 , Issue.1 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 10
    • 84891071699 scopus 로고    scopus 로고
    • A demonstration of spatialhadoop: an efficient mapreduce framework for spatial data
    • A.Eldawy, and M.F.Mokbel, 2013. A demonstration of spatialhadoop:an efficient mapreduce framework for spatial data. Proceedings of the VLDB Endowment, 6 (12), 1230–1233. doi:10.14778/2536274
    • (2013) Proceedings of the VLDB Endowment , vol.6 , Issue.12 , pp. 1230-1233
    • Eldawy, A.1    Mokbel, M.F.2
  • 11
    • 0016353777 scopus 로고
    • Quad trees a data structure for retrieval on composite keys
    • R.A.Finkel, and J.L.Bentley, 1974. Quad trees a data structure for retrieval on composite keys. Acta Informatica, 4 (1), 1–9. doi:10.1007/BF00288933
    • (1974) Acta Informatica , vol.4 , Issue.1 , pp. 1-9
    • Finkel, R.A.1    Bentley, J.L.2
  • 12
    • 84893483814 scopus 로고    scopus 로고
    • In: 12th IEEE international conference on Trust, security and privacy in computing and communications (TrustCom), 16–18 July, Melbourne. IEEE
    • Y.Geng, et al., 2013. SciHive:array-based query processing with HiveQL. In:12th IEEE international conference on Trust, security and privacy in computing and communications (TrustCom), 16–18 July, Melbourne. IEEE.
    • (2013) SciHive: array-based query processing with HiveQL
    • Geng, Y.1
  • 13
    • 85116951768 scopus 로고    scopus 로고
    • In, IEEE international congress on big data (BigData Congress)
    • Y.Geng, X.Huang, and G.Yang, 2014. Adaptive indexing for distributed array processing. Adaptive indexing for distributed array processing. In:IEEE international congress on big data (BigData Congress), 27 June–2 July, Anchorage. IEEE.
    • (2014) Adaptive indexing for distributed array processing
    • Geng, Y.1    Huang, X.2    Yang, G.3
  • 15
    • 84875889838 scopus 로고    scopus 로고
    • A high performance web-based system for analyzing and visualizing spatiotemporal data for climate studies
    • Z.Li, et al., 2013. A high performance web-based system for analyzing and visualizing spatiotemporal data for climate studies. In:S. Liang, X. Wang, and C. Claramunt, eds. W2GIS. lecture notes in computer science, Vol. 7820. Berlin:Springer, 190–198.
    • (2013) S. Liang, X. Wang, and C. Claramunt, eds. W2GIS
    • Li, Z.1
  • 16
    • 84924299962 scopus 로고    scopus 로고
    • Enabling big geoscience data analytics with a cloud-based, MapReduce-enabled and service-oriented workflow framework
    • Z.Li, et al., 2015. Enabling big geoscience data analytics with a cloud-based, MapReduce-enabled and service-oriented workflow framework. Plos One, 10 (3), e0116781. doi:10.1371/journal.pone.0116781
    • (2015) Plos One , vol.10 , Issue.3 , pp. e0116781
    • Li, Z.1
  • 19
    • 79951498486 scopus 로고    scopus 로고
    • Climate data challenges in the 21 st century
    • J.T.Overpeck, et al., 2011. Climate data challenges in the 21 st century. Science(Washington), 331 (6018), 700–702. doi:10.1126/science.1197869
    • (2011) Science(Washington) , vol.331 , Issue.6018 , pp. 700-702
    • Overpeck, J.T.1
  • 20
    • 79952683753 scopus 로고    scopus 로고
    • MERRA: NASA’s modern-era retrospective analysis for research and applications
    • M.M.Rienecker, et al., 2011. MERRA:NASA’s modern-era retrospective analysis for research and applications. Journal of Climate, 24 (14), 3624–3648. doi:10.1175/JCLI-D-11-00015.1
    • (2011) Journal of Climate , vol.24 , Issue.14 , pp. 3624-3648
    • Rienecker, M.M.1
  • 21
    • 84892956198 scopus 로고    scopus 로고
    • MERRA analytic services: meeting the big data challenges of climate science through cloud-enabled climate analytics-as-a-service
    • J.L.Schnase, et al., 2014. MERRA analytic services:meeting the big data challenges of climate science through cloud-enabled climate analytics-as-a-service. Computers, Environment and Urban Systems. doi:10.1016/j.compenvurbsys.2013.12.003
    • (2014) Computers, Environment and Urban Systems
    • Schnase, J.L.1
  • 22
    • 84992689864 scopus 로고    scopus 로고
    • Big data: what is NASA doing with big data today?
    • Available from:, March
    • N.Skytland, 2012. Big data:what is NASA doing with big data today? Open.Gov open access article. Available from: http://open.nasa.gov/blog/2012/10/04/what-is-nasa-doing-with-big-data-today/ [Accessed 15March 2015].
    • (2012) Open.Gov open access article
    • Skytland, N.1
  • 23
    • 84880365676 scopus 로고    scopus 로고
    • A web-based geovisual analytical system for climate studies
    • M.Sun, et al., 2012. A web-based geovisual analytical system for climate studies. Future Internet, 4 (4), 1069–1085. doi:10.3390/fi4041069
    • (2012) Future Internet , vol.4 , Issue.4 , pp. 1069-1085
    • Sun, M.1
  • 25
    • 77953650310 scopus 로고    scopus 로고
    • FastBit: interactively searching massive data
    • 012053
    • K.Wu, et al., 2009. FastBit:interactively searching massive data. Journal of Physics:Conference Series, 180 (1), 012053.
    • (2009) Journal of Physics: Conference Series , vol.180 , Issue.1
    • Wu, K.1
  • 26
    • 79955001355 scopus 로고    scopus 로고
    • Using spatial principles to optimize distributed computing for enabling the physical science discoveries
    • C.Yang, et al., 2011. Using spatial principles to optimize distributed computing for enabling the physical science discoveries. Proceedings of the National Academy of Sciences, 108 (14), 5498–5503. doi:10.1073/pnas.0909315108
    • (2011) Proceedings of the National Academy of Sciences , vol.108 , Issue.14 , pp. 5498-5503
    • Yang, C.1
  • 27
    • 78649508618 scopus 로고    scopus 로고
    • Parallel accessing massive NetCDF data based on mapreduce
    • H.Zhao, et al., 2010. Parallel accessing massive NetCDF data based on mapreduce. In:F. Wang, ed. Web information systems and mining. Berlin:Springer, 425–431.
    • (2010) In , pp. 425-431
    • Zhao, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.