메뉴 건너뛰기




Volumn 35, Issue , 2016, Pages 3-41

An overview of the factor-augmented error-correction model

Author keywords

Cointegration; Dynamic factor models; Factor augmented error correction models; FAVAR; Structural analysis

Indexed keywords


EID: 84954183134     PISSN: 07319053     EISSN: None     Source Type: Book Series    
DOI: 10.1108/S0731-905320150000035001     Document Type: Review
Times cited : (8)

References (27)
  • 1
    • 3042816537 scopus 로고    scopus 로고
    • Estimating cross-section common stochastic trends in nonstationary panel data
    • Bai, J. (2004). Estimating cross-section common stochastic trends in nonstationary panel data. Journal of Econometrics, 122, 137-183.
    • (2004) Journal of Econometrics , vol.122 , pp. 137-183
    • Bai, J.1
  • 2
    • 0036221554 scopus 로고    scopus 로고
    • Determining the number of factors in approximate factor models
    • Bai, J., & Ng, S. (2002). Determining the number of factors in approximate factor models. Econometrica, 70, 191-221.
    • (2002) Econometrica , vol.70 , pp. 191-221
    • Bai, J.1    Ng, S.2
  • 3
    • 3042765507 scopus 로고    scopus 로고
    • A PANIC attack on unit roots and cointegration
    • Bai, J., & Ng, S. (2004). A PANIC attack on unit roots and cointegration. Econometrica, 72, 1127-1177.
    • (2004) Econometrica , vol.72 , pp. 1127-1177
    • Bai, J.1    Ng, S.2
  • 4
    • 63149111376 scopus 로고    scopus 로고
    • Panel cointegration with global stochastic trends
    • Bai, J., Kao, C., & Ng, S. (2009). Panel cointegration with global stochastic trends. Journal of Econometrics, 149, 82-99.
    • (2009) Journal of Econometrics , vol.149 , pp. 82-99
    • Bai, J.1    Kao, C.2    Ng, S.3
  • 9
    • 15544377383 scopus 로고    scopus 로고
    • Measuring the effects of monetary policy: A factor-augmented vector autoregressive (FAVAR) approach
    • Bernanke, B. S., Boivin, J., & Eliasz, P. (2005). Measuring the effects of monetary policy: A factor-augmented vector autoregressive (FAVAR) approach. Quarterly Journal of Economics, 120, 387-422.
    • (2005) Quarterly Journal of Economics , vol.120 , pp. 387-422
    • Bernanke, B.S.1    Boivin, J.2    Eliasz, P.3
  • 10
    • 33646162895 scopus 로고    scopus 로고
    • Are more data always better for factor analysis?
    • Boivin, J., & Ng, S. (2006). Are more data always better for factor analysis? Journal of Econometrics, 132, 169-194.
    • (2006) Journal of Econometrics , vol.132 , pp. 169-194
    • Boivin, J.1    Ng, S.2
  • 11
    • 67650694037 scopus 로고    scopus 로고
    • Semiparametric cointegrating rank selection
    • Cheng, X., & Phillips, P. C. B. (2009). Semiparametric cointegrating rank selection. Econometrics Journal, 12, 83-104 s1.
    • (2009) Econometrics Journal , vol.12 , pp. 83-104s1
    • Cheng, X.1    Phillips, P.C.B.2
  • 14
    • 33947513916 scopus 로고    scopus 로고
    • Approximately normal tests for equal predictive accuracy in nested models
    • Clark, T. E., & West, K. D. (2007). Approximately normal tests for equal predictive accuracy in nested models. Journal of Econometrics, 138, 291-311.
    • (2007) Journal of Econometrics , vol.138 , pp. 291-311
    • Clark, T.E.1    West, K.D.2
  • 15
    • 0000013567 scopus 로고
    • Co-integration and error correction: Representation, estimation, and testing
    • Engle, R. F., & Granger, C. W. J. (1987). Co-integration and error correction: Representation, estimation, and testing. Econometrica, 55, 251-276.
    • (1987) Econometrica , vol.55 , pp. 251-276
    • Engle, R.F.1    Granger, C.W.J.2
  • 22
    • 33747879841 scopus 로고    scopus 로고
    • A comparison of direct and iterated AR methods for forecasting macroeconomic series h-steps ahead
    • Marcellino, M., Stock, J. H., & Watson, M. W. (2006). A comparison of direct and iterated AR methods for forecasting macroeconomic series h-steps ahead. Journal of Econometrics, 135, 499-526.
    • (2006) Journal of Econometrics , vol.135 , pp. 499-526
    • Marcellino, M.1    Stock, J.H.2    Watson, M.W.3
  • 24
    • 0036970448 scopus 로고    scopus 로고
    • Forecasting using principal components from a large number of predictors
    • Stock, J. H., & Watson, M. W. (2002a). Forecasting using principal components from a large number of predictors. Journal of American Statistical Association, 97, 1167-1179.
    • (2002) Journal of American Statistical Association , vol.97 , pp. 1167-1179
    • Stock, J.H.1    Watson, M.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.