-
1
-
-
35748978234
-
Empirical characterization of random forest variable importance measures
-
[p20]
-
K. J. Archer and R. V. Kimes. Empirical characterization of random forest variable importance measures. Computational Statistics&Data Analysis, 52(4):2249-2260, 2008. [p20]
-
(2008)
Computational Statistics&Data Analysis
, vol.52
, Issue.4
, pp. 2249-2260
-
-
Archer, K.J.1
Kimes, R.V.2
-
2
-
-
0141768106
-
The dominance analysis approach for comparing predictors in multiple regression
-
[p20]
-
R. Azen and D. V. Budescu. The dominance analysis approach for comparing predictors in multiple regression. Psychological Methods, 8(2):129-148, 2003. [p20]
-
(2003)
Psychological Methods
, vol.8
, Issue.2
, pp. 129-148
-
-
Azen, R.1
Budescu, D.V.2
-
3
-
-
84873187093
-
Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics
-
[p19]
-
A.-L. Boulesteix, S. Janitza, J. Kruppa, and I. R. König. Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(6):493-507, 2012. [p19]
-
(2012)
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
, vol.2
, Issue.6
, pp. 493-507
-
-
Boulesteix, A.-L.1
Janitza, S.2
Kruppa, J.3
König, I.R.4
-
4
-
-
0030211964
-
Bagging predictors
-
[p20]
-
L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996. [p20]
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
5
-
-
0035478854
-
Random forests
-
[p19, 20]
-
L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001. [p19, 20]
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
7
-
-
0003802343
-
-
Chapman&Hall, New York, [p19]
-
L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Chapman&Hall, New York, 1984. [p19]
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.2
Olshen, R.3
Stone, C.4
-
8
-
-
38149114028
-
Simultaneous clustering of gene expression data with clinical chemistry and pathological evaluations reveals phenotypic prototypes
-
[p29]
-
P. Bushel, R. Wolfinger, and G. Gibson. Simultaneous clustering of gene expression data with clinical chemistry and pathological evaluations reveals phenotypic prototypes. BMC Systems Biology, 1(1):15, 2007. [p29]
-
(2007)
BMC Systems Biology
, vol.1
, Issue.1
, pp. 15
-
-
Bushel, P.1
Wolfinger, R.2
Gibson, G.3
-
9
-
-
84879480285
-
Feature subset selection filter-wrapper based on low quality data
-
[p20]
-
J. M. Cadenas, M. Carmen Garrido, and R. Martínez. Feature subset selection filter-wrapper based on low quality data. Expert Systems with Applications, 40(16):6241-6252, 2013. [p20]
-
(2013)
Expert Systems with Applications
, vol.40
, Issue.16
, pp. 6241-6252
-
-
Cadenas, J.M.1
Carmen Garrido, M.2
Martínez, R.3
-
10
-
-
24944568859
-
Partial and recombined estimators for nonlinear additive models
-
[p28]
-
N. Chèze, J.-M. Poggi, and B. Portier. Partial and recombined estimators for nonlinear additive models. Statistical Inference for Stochastic Processes, 6(2):155-197, 2003. [p28]
-
(2003)
Statistical Inference for Stochastic Processes
, vol.6
, Issue.2
, pp. 155-197
-
-
Chèze, N.1
Poggi, J.-M.2
Portier, B.3
-
11
-
-
35348970485
-
GeneSrF and varSelRF: A web-based tool and R package for gene selection and classification using random forest
-
[p20]
-
R. Díaz-Uriarte. GeneSrF and varSelRF: A web-based tool and R package for gene selection and classification using random forest. BMC Bioinformatics, 8(1):328, 2007. [p20]
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.1
, pp. 328
-
-
Díaz-Uriarte, R.1
-
12
-
-
30644464444
-
Gene selection and classification of microarray data using random forest
-
[p20, 30, 31]
-
R. Díaz-Uriarte and S. Alvarez De Andres. Gene selection and classification of microarray data using random forest. BMC Bioinformatics, 7(1):3, 2006. [p20, 30, 31]
-
(2006)
BMC Bioinformatics
, vol.7
, Issue.1
, pp. 3
-
-
Díaz-Uriarte, R.1
Alvarez De Andres, S.2
-
14
-
-
77957892936
-
Random forests based feature selection for decoding fMRI data
-
[p21]
-
R. Genuer, V. Michel, E. Eger, and B. Thirion. Random forests based feature selection for decoding fMRI data. In Proceedings of COMPSTAT'2010 - 19th International Conference on Computational Statistics, pages 1071-1078, 2010a. [p21]
-
(2010)
In Proceedings of COMPSTAT'2010 - 19th International Conference on Computational Statistics
, pp. 1071-1078
-
-
Genuer, R.1
Michel, V.2
Eger, E.3
Thirion, B.4
-
15
-
-
77957922514
-
Variable selection using random forests
-
[p19, 20, 21, 22, 23, 27]
-
R. Genuer, J.-M. Poggi, and C. Tuleau-Malot. Variable selection using random forests. Pattern Recognition Letters, 31(14):2225-2236, 2010b. [p19, 20, 21, 22, 23, 27]
-
(2010)
Pattern Recognition Letters
, vol.31
, Issue.14
, pp. 2225-2236
-
-
Genuer, R.1
Poggi, J.-M.2
Tuleau-Malot, C.3
-
16
-
-
38049187967
-
A framework for significance analysis of gene expression data using dimension reduction methods
-
[p29]
-
L. Gidskehaug, E. Anderssen, A. Flatberg, and B. K. Alsberg. A framework for significance analysis of gene expression data using dimension reduction methods. BMC Bioinformatics, 8(1):346, 2007. [p29]
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.1
, pp. 346
-
-
Gidskehaug, L.1
Anderssen, E.2
Flatberg, A.3
Alsberg, B.K.4
-
17
-
-
84876289904
-
Visualising associations between paired 'omics' data sets
-
[p29, 30]
-
I. González, K.-A. Lê Cao, M. J. Davis, and S. Déjean. Visualising associations between paired 'omics' data sets. BioData Mining, 5(1):1-23, 2012. [p29, 30]
-
(2012)
BioData Mining
, vol.5
, Issue.1
, pp. 1-23
-
-
González, I.1
Lê Cao, K.-A.2
Davis, M.J.3
Déjean, S.4
-
18
-
-
84913533002
-
Correlation and variable importance in random forests
-
arXiv:1310.5726. [p20, 21]
-
B. Gregorutti, B. Michel, and P. Saint-Pierre. Correlation and variable importance in random forests. 2013. arXiv:1310.5726. [p20, 21]
-
(2013)
-
-
Gregorutti, B.1
Michel, B.2
Saint, P.-Pierre.3
-
19
-
-
33745561205
-
An introduction to variable and feature selection
-
[p20]
-
I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of Machine Learning Research, 3:1157-1182, 2003. [p20]
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
20
-
-
84871787788
-
A new variable selection approach using random forests
-
[p20]
-
A. Hapfelmeier and K. Ulm. A new variable selection approach using random forests. Computational Statistics&Data Analysis, 60:50-69, 2012. [p20]
-
(2012)
Computational Statistics&Data Analysis
, vol.60
, pp. 50-69
-
-
Hapfelmeier, A.1
Ulm, K.2
-
22
-
-
3242742968
-
Gene expression profiling of rat livers reveals indicators of potential adverse effects
-
[p29]
-
A. N. Heinloth, R. D. Irwin, G. A. Boorman, P. Nettesheim, R. D. Fannin, S. O. Sieber, M. L. Snell, C. J. Tucker, L. Li, G. S. Travlos, G. Vansant, P. E. Blackshear, R. W. Tennant, M. L. Cunningham, and R. S. Paules. Gene expression profiling of rat livers reveals indicators of potential adverse effects. Toxicological Sciences, 80(1):193-202, 2004. [p29]
-
(2004)
Toxicological Sciences
, vol.80
, Issue.1
, pp. 193-202
-
-
Heinloth, A.N.1
Irwin, R.D.2
Boorman, G.A.3
Nettesheim, P.4
Fannin, R.D.5
Sieber, S.O.6
Snell, M.L.7
Tucker, C.J.8
Li, L.9
Travlos, G.S.10
Vansant, G.11
Blackshear, P.E.12
Tennant, R.W.13
Cunningham, M.L.14
Paules, R.S.15
-
23
-
-
33749677657
-
Unbiased recursive partitioning: A conditional inference framework
-
[p19]
-
T. Hothorn, K. Hornik, and A. Zeileis. Unbiased recursive partitioning: A conditional inference framework. Journal of Computational and Graphical Statistics, 15(3):651-674, 2006. [p19]
-
(2006)
Journal of Computational and Graphical Statistics
, vol.15
, Issue.3
, pp. 651-674
-
-
Hothorn, T.1
Hornik, K.2
Zeileis, A.3
-
24
-
-
0034954414
-
Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
-
[p30]
-
J. Khan, J. S. Wei, M. Ringner, L. H. Saal, M. Ladanyi, F. Westermann, F. Berthold, M. Schwab, C. R. Antonescu, C. Peterson, and P. S. Meltzer. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine, 7(6):673-679, 2001. [p30]
-
(2001)
Nature Medicine
, vol.7
, Issue.6
, pp. 673-679
-
-
Khan, J.1
Wei, J.S.2
Ringner, M.3
Saal, L.H.4
Ladanyi, M.5
Westermann, F.6
Berthold, F.7
Schwab, M.8
Antonescu, C.R.9
Peterson, C.10
Meltzer, P.S.11
-
25
-
-
0031381525
-
Wrappers for feature subset selection
-
[p20]
-
R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1):273-324, 1997. [p20]
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
26
-
-
77958158373
-
Feature selection with the Boruta package
-
[p20, 29]
-
M. B. Kursa and W. R. Rudnicki. Feature selection with the Boruta package. Journal of Statistical Software, 36(11):1-13, 2010. [p20, 29]
-
(2010)
Journal of Statistical Software
, vol.36
, Issue.11
, pp. 1-13
-
-
Kursa, M.B.1
Rudnicki, W.R.2
-
27
-
-
56549118184
-
ofw: An R package to select continuous variables for multiclass classification with a stochastic wrapper method
-
[p20, 30]
-
K.-A. Lê Cao and P. Chabrier. ofw: An R package to select continuous variables for multiclass classification with a stochastic wrapper method. Journal of Statistical Software, 28(9):1-16, 2008. [p20, 30]
-
(2008)
Journal of Statistical Software
, vol.28
, Issue.9
, pp. 1-16
-
-
Lê Cao, K.-A.1
Chabrier, P.2
-
28
-
-
57349164450
-
A sparse PLS for variable selection when integrating omics data
-
[p29]
-
K.-A. Lê Cao, D. Rossouw, C. Robert-Granié, and P. Besse. A sparse PLS for variable selection when integrating omics data. Statistical Applications in Genetics and Molecular Biology, 7(1), 2008. [p29]
-
(2008)
Statistical Applications in Genetics and Molecular Biology
, vol.7
, Issue.1
-
-
Lê Cao, K.-A.1
Rossouw, D.2
Robert-Granié, C.3
Besse, P.4
-
29
-
-
84946014887
-
-
R package version 5.0-4, with key contributions from F. Rohart and B. Gautier and contributions from P. Monget, J. Coquery, F. Yao and B. Liquet. [p29]
-
K.-A. Lê Cao, I. Gonzalez, and S. Dejean. mixOmics: Omics Data Integration Project, 2015. URL https://CRAN.R-project.org/package=mixOmics. R package version 5.0-4, with key contributions from F. Rohart and B. Gautier and contributions from P. Monget, J. Coquery, F. Yao and B. Liquet. [p29]
-
(2015)
mixOmics: Omics Data Integration Project
-
-
Lê Cao, K.-A.1
Gonzalez, I.2
Dejean, S.3
-
31
-
-
0345040873
-
Classification and regression by randomForest
-
[p19]
-
A. Liaw and M.Wiener. Classification and regression by randomForest. R News, 2(3):18-22, 2002. [p19]
-
(2002)
R News
, vol.2
, Issue.3
, pp. 18-22
-
-
Liaw, A.1
Wiener, M.2
-
32
-
-
84898857912
-
Understanding variable importances in forests of randomized trees
-
[p21]
-
G. Louppe, L.Wehenkel, A. Sutera, and P. Geurts. Understanding variable importances in forests of randomized trees. In Advances in Neural Information Processing Systems, pages 431-439, 2013. [p21]
-
(2013)
In Advances in Neural Information Processing Systems
, pp. 431-439
-
-
Louppe, G.1
Wehenkel, L.2
Sutera, A.3
Geurts, P.4
-
34
-
-
33947525717
-
Consistent feature selection for pattern recognition in polynomial time
-
[p21]
-
R. Nilsson, J. M. Peña, J. Björkegren, and J. Tegnér. Consistent feature selection for pattern recognition in polynomial time. Journal of Machine Learning Research, 8:589-612, 2007. [p21]
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 589-612
-
-
Nilsson, R.1
Peña, J.M.2
Björkegren, J.3
Tegnér, J.4
-
35
-
-
0013321815
-
ipred: Improved predictors
-
[p20]
-
A. Peters, T. Hothorn, and B. Lausen. ipred: Improved predictors. R News, 2(2):33-36, 2002. [p20]
-
(2002)
R News
, vol.2
, Issue.2
, pp. 33-36
-
-
Peters, A.1
Hothorn, T.2
Lausen, B.3
-
36
-
-
80052986293
-
spikeSlabGAM: Bayesian variable selection, model choice and regularization for generalized additive mixed models in R
-
[p20]
-
F. Scheipl. spikeSlabGAM: Bayesian variable selection, model choice and regularization for generalized additive mixed models in R. Journal of Statistical Software, 43(14):1-24, 2011. [p20]
-
(2011)
Journal of Statistical Software
, vol.43
, Issue.14
, pp. 1-24
-
-
Scheipl, F.1
-
37
-
-
33847096395
-
Bias in random forest variable importance measures: Illustrations, sources and a solution
-
[p20]
-
C. Strobl, A.-L. Boulesteix, A. Zeileis, and T. Hothorn. Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics, 8(1):25, 2007. [p20]
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.1
, pp. 25
-
-
Strobl, C.1
Boulesteix, A.-L.2
Zeileis, A.3
Hothorn, T.4
-
38
-
-
48549095457
-
Conditional variable importance for random forests
-
[p20]
-
C. Strobl, A.-L. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis. Conditional variable importance for random forests. BMC Bioinformatics, 9(1):307, 2008. [p20]
-
(2008)
BMC Bioinformatics
, vol.9
, Issue.1
, pp. 307
-
-
Strobl, C.1
Boulesteix, A.-L.2
Kneib, T.3
Augustin, T.4
Zeileis, A.5
-
39
-
-
35048900518
-
Application of Breiman's random forest to modeling structure-activity relationships of pharmaceutical molecules
-
Springer, [p27]
-
V. Svetnik, A. Liaw, C. Tong, and T. Wang. Application of Breiman's random forest to modeling structure-activity relationships of pharmaceutical molecules. In Multiple Classifier Systems, pages 334-343. Springer, 2004. [p27]
-
(2004)
In Multiple Classifier Systems
, pp. 334-343
-
-
Svetnik, V.1
Liaw, A.2
Tong, C.3
Wang, T.4
-
41
-
-
77958064179
-
Mining data with random forests: A survey and results of new tests
-
[p19]
-
A. Verikas, A. Gelzinis, and M. Bacauskiene. Mining data with random forests: A survey and results of new tests. Pattern Recognition, 44(2):330-349, 2011. [p19]
-
(2011)
Pattern Recognition
, vol.44
, Issue.2
, pp. 330-349
-
-
Verikas, A.1
Gelzinis, A.2
Bacauskiene, M.3
-
42
-
-
84872812682
-
Meta-statistics for variable selection: The R package BioMark
-
[p20]
-
H. R. Wehrens, M. Johan, and P. Franceschi. Meta-statistics for variable selection: The R package BioMark. Journal of Statistical Software, 51(10):1-18, 2012. [p20]
-
(2012)
Journal of Statistical Software
, vol.51
, Issue.10
, pp. 1-18
-
-
Wehrens, H.R.1
Johan, M.2
Franceschi, P.3
-
43
-
-
84890520049
-
Use of the zero norm with linear models and kernel methods
-
[p23]
-
J. Weston, A. Elisseeff, B. Schölkopf, and M. Tipping. Use of the zero norm with linear models and kernel methods. Journal of Machine Learning Research, 3:1439-1461, 2003. [p23]
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1439-1461
-
-
Weston, J.1
Elisseeff, A.2
Schölkopf, B.3
Tipping, M.4
|