메뉴 건너뛰기




Volumn 7, Issue 2, 2015, Pages 19-33

VSURF: An R package for variable selection using random forests

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84954146796     PISSN: None     EISSN: 20734859     Source Type: Journal    
DOI: 10.32614/rj-2015-018     Document Type: Article
Times cited : (431)

References (43)
  • 1
    • 35748978234 scopus 로고    scopus 로고
    • Empirical characterization of random forest variable importance measures
    • [p20]
    • K. J. Archer and R. V. Kimes. Empirical characterization of random forest variable importance measures. Computational Statistics&Data Analysis, 52(4):2249-2260, 2008. [p20]
    • (2008) Computational Statistics&Data Analysis , vol.52 , Issue.4 , pp. 2249-2260
    • Archer, K.J.1    Kimes, R.V.2
  • 2
    • 0141768106 scopus 로고    scopus 로고
    • The dominance analysis approach for comparing predictors in multiple regression
    • [p20]
    • R. Azen and D. V. Budescu. The dominance analysis approach for comparing predictors in multiple regression. Psychological Methods, 8(2):129-148, 2003. [p20]
    • (2003) Psychological Methods , vol.8 , Issue.2 , pp. 129-148
    • Azen, R.1    Budescu, D.V.2
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • [p20]
    • L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996. [p20]
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • [p19, 20]
    • L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001. [p19, 20]
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 8
    • 38149114028 scopus 로고    scopus 로고
    • Simultaneous clustering of gene expression data with clinical chemistry and pathological evaluations reveals phenotypic prototypes
    • [p29]
    • P. Bushel, R. Wolfinger, and G. Gibson. Simultaneous clustering of gene expression data with clinical chemistry and pathological evaluations reveals phenotypic prototypes. BMC Systems Biology, 1(1):15, 2007. [p29]
    • (2007) BMC Systems Biology , vol.1 , Issue.1 , pp. 15
    • Bushel, P.1    Wolfinger, R.2    Gibson, G.3
  • 9
    • 84879480285 scopus 로고    scopus 로고
    • Feature subset selection filter-wrapper based on low quality data
    • [p20]
    • J. M. Cadenas, M. Carmen Garrido, and R. Martínez. Feature subset selection filter-wrapper based on low quality data. Expert Systems with Applications, 40(16):6241-6252, 2013. [p20]
    • (2013) Expert Systems with Applications , vol.40 , Issue.16 , pp. 6241-6252
    • Cadenas, J.M.1    Carmen Garrido, M.2    Martínez, R.3
  • 11
    • 35348970485 scopus 로고    scopus 로고
    • GeneSrF and varSelRF: A web-based tool and R package for gene selection and classification using random forest
    • [p20]
    • R. Díaz-Uriarte. GeneSrF and varSelRF: A web-based tool and R package for gene selection and classification using random forest. BMC Bioinformatics, 8(1):328, 2007. [p20]
    • (2007) BMC Bioinformatics , vol.8 , Issue.1 , pp. 328
    • Díaz-Uriarte, R.1
  • 12
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • [p20, 30, 31]
    • R. Díaz-Uriarte and S. Alvarez De Andres. Gene selection and classification of microarray data using random forest. BMC Bioinformatics, 7(1):3, 2006. [p20, 30, 31]
    • (2006) BMC Bioinformatics , vol.7 , Issue.1 , pp. 3
    • Díaz-Uriarte, R.1    Alvarez De Andres, S.2
  • 15
    • 77957922514 scopus 로고    scopus 로고
    • Variable selection using random forests
    • [p19, 20, 21, 22, 23, 27]
    • R. Genuer, J.-M. Poggi, and C. Tuleau-Malot. Variable selection using random forests. Pattern Recognition Letters, 31(14):2225-2236, 2010b. [p19, 20, 21, 22, 23, 27]
    • (2010) Pattern Recognition Letters , vol.31 , Issue.14 , pp. 2225-2236
    • Genuer, R.1    Poggi, J.-M.2    Tuleau-Malot, C.3
  • 16
    • 38049187967 scopus 로고    scopus 로고
    • A framework for significance analysis of gene expression data using dimension reduction methods
    • [p29]
    • L. Gidskehaug, E. Anderssen, A. Flatberg, and B. K. Alsberg. A framework for significance analysis of gene expression data using dimension reduction methods. BMC Bioinformatics, 8(1):346, 2007. [p29]
    • (2007) BMC Bioinformatics , vol.8 , Issue.1 , pp. 346
    • Gidskehaug, L.1    Anderssen, E.2    Flatberg, A.3    Alsberg, B.K.4
  • 17
    • 84876289904 scopus 로고    scopus 로고
    • Visualising associations between paired 'omics' data sets
    • [p29, 30]
    • I. González, K.-A. Lê Cao, M. J. Davis, and S. Déjean. Visualising associations between paired 'omics' data sets. BioData Mining, 5(1):1-23, 2012. [p29, 30]
    • (2012) BioData Mining , vol.5 , Issue.1 , pp. 1-23
    • González, I.1    Lê Cao, K.-A.2    Davis, M.J.3    Déjean, S.4
  • 18
    • 84913533002 scopus 로고    scopus 로고
    • Correlation and variable importance in random forests
    • arXiv:1310.5726. [p20, 21]
    • B. Gregorutti, B. Michel, and P. Saint-Pierre. Correlation and variable importance in random forests. 2013. arXiv:1310.5726. [p20, 21]
    • (2013)
    • Gregorutti, B.1    Michel, B.2    Saint, P.-Pierre.3
  • 19
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • [p20]
    • I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of Machine Learning Research, 3:1157-1182, 2003. [p20]
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 20
    • 84871787788 scopus 로고    scopus 로고
    • A new variable selection approach using random forests
    • [p20]
    • A. Hapfelmeier and K. Ulm. A new variable selection approach using random forests. Computational Statistics&Data Analysis, 60:50-69, 2012. [p20]
    • (2012) Computational Statistics&Data Analysis , vol.60 , pp. 50-69
    • Hapfelmeier, A.1    Ulm, K.2
  • 25
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • [p20]
    • R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1):273-324, 1997. [p20]
    • (1997) Artificial Intelligence , vol.97 , Issue.1 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 26
    • 77958158373 scopus 로고    scopus 로고
    • Feature selection with the Boruta package
    • [p20, 29]
    • M. B. Kursa and W. R. Rudnicki. Feature selection with the Boruta package. Journal of Statistical Software, 36(11):1-13, 2010. [p20, 29]
    • (2010) Journal of Statistical Software , vol.36 , Issue.11 , pp. 1-13
    • Kursa, M.B.1    Rudnicki, W.R.2
  • 27
    • 56549118184 scopus 로고    scopus 로고
    • ofw: An R package to select continuous variables for multiclass classification with a stochastic wrapper method
    • [p20, 30]
    • K.-A. Lê Cao and P. Chabrier. ofw: An R package to select continuous variables for multiclass classification with a stochastic wrapper method. Journal of Statistical Software, 28(9):1-16, 2008. [p20, 30]
    • (2008) Journal of Statistical Software , vol.28 , Issue.9 , pp. 1-16
    • Lê Cao, K.-A.1    Chabrier, P.2
  • 29
    • 84946014887 scopus 로고    scopus 로고
    • R package version 5.0-4, with key contributions from F. Rohart and B. Gautier and contributions from P. Monget, J. Coquery, F. Yao and B. Liquet. [p29]
    • K.-A. Lê Cao, I. Gonzalez, and S. Dejean. mixOmics: Omics Data Integration Project, 2015. URL https://CRAN.R-project.org/package=mixOmics. R package version 5.0-4, with key contributions from F. Rohart and B. Gautier and contributions from P. Monget, J. Coquery, F. Yao and B. Liquet. [p29]
    • (2015) mixOmics: Omics Data Integration Project
    • Lê Cao, K.-A.1    Gonzalez, I.2    Dejean, S.3
  • 31
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomForest
    • [p19]
    • A. Liaw and M.Wiener. Classification and regression by randomForest. R News, 2(3):18-22, 2002. [p19]
    • (2002) R News , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 35
    • 0013321815 scopus 로고    scopus 로고
    • ipred: Improved predictors
    • [p20]
    • A. Peters, T. Hothorn, and B. Lausen. ipred: Improved predictors. R News, 2(2):33-36, 2002. [p20]
    • (2002) R News , vol.2 , Issue.2 , pp. 33-36
    • Peters, A.1    Hothorn, T.2    Lausen, B.3
  • 36
    • 80052986293 scopus 로고    scopus 로고
    • spikeSlabGAM: Bayesian variable selection, model choice and regularization for generalized additive mixed models in R
    • [p20]
    • F. Scheipl. spikeSlabGAM: Bayesian variable selection, model choice and regularization for generalized additive mixed models in R. Journal of Statistical Software, 43(14):1-24, 2011. [p20]
    • (2011) Journal of Statistical Software , vol.43 , Issue.14 , pp. 1-24
    • Scheipl, F.1
  • 37
    • 33847096395 scopus 로고    scopus 로고
    • Bias in random forest variable importance measures: Illustrations, sources and a solution
    • [p20]
    • C. Strobl, A.-L. Boulesteix, A. Zeileis, and T. Hothorn. Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics, 8(1):25, 2007. [p20]
    • (2007) BMC Bioinformatics , vol.8 , Issue.1 , pp. 25
    • Strobl, C.1    Boulesteix, A.-L.2    Zeileis, A.3    Hothorn, T.4
  • 39
    • 35048900518 scopus 로고    scopus 로고
    • Application of Breiman's random forest to modeling structure-activity relationships of pharmaceutical molecules
    • Springer, [p27]
    • V. Svetnik, A. Liaw, C. Tong, and T. Wang. Application of Breiman's random forest to modeling structure-activity relationships of pharmaceutical molecules. In Multiple Classifier Systems, pages 334-343. Springer, 2004. [p27]
    • (2004) In Multiple Classifier Systems , pp. 334-343
    • Svetnik, V.1    Liaw, A.2    Tong, C.3    Wang, T.4
  • 41
    • 77958064179 scopus 로고    scopus 로고
    • Mining data with random forests: A survey and results of new tests
    • [p19]
    • A. Verikas, A. Gelzinis, and M. Bacauskiene. Mining data with random forests: A survey and results of new tests. Pattern Recognition, 44(2):330-349, 2011. [p19]
    • (2011) Pattern Recognition , vol.44 , Issue.2 , pp. 330-349
    • Verikas, A.1    Gelzinis, A.2    Bacauskiene, M.3
  • 42
    • 84872812682 scopus 로고    scopus 로고
    • Meta-statistics for variable selection: The R package BioMark
    • [p20]
    • H. R. Wehrens, M. Johan, and P. Franceschi. Meta-statistics for variable selection: The R package BioMark. Journal of Statistical Software, 51(10):1-18, 2012. [p20]
    • (2012) Journal of Statistical Software , vol.51 , Issue.10 , pp. 1-18
    • Wehrens, H.R.1    Johan, M.2    Franceschi, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.