메뉴 건너뛰기




Volumn 11, Issue 1, 2016, Pages

Scalable predictive analysis in critically ill patients using a visual open data analysis platform

Author keywords

[No Author keywords available]

Indexed keywords

CLINICAL STUDY; CRITICALLY ILL PATIENT; DATA ANALYSIS; DATA BASE; DATA MINING; EXTRACT; HUMAN; INTENSIVE CARE; MEANINGFUL USE CRITERIA; MEDICAL RESEARCH; MODEL; PLANT LEAF; QUANTITATIVE STUDY; THROMBOCYTE COUNT; ALGORITHM; COMPUTER LANGUAGE; CRITICAL ILLNESS; FACTUAL DATABASE; INFORMATION RETRIEVAL; INTENSIVE CARE UNIT; PROCEDURES; REPRODUCIBILITY; STATISTICS AND NUMERICAL DATA; THEORETICAL MODEL;

EID: 84953931466     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0145791     Document Type: Article
Times cited : (49)

References (63)
  • 1
    • 84926285194 scopus 로고    scopus 로고
    • Big data in healthcare: For whom the bell tolls?
    • Van Poucke S, Thomeer M, Hadzic A. 2015, Big data in healthcare: for whom the bell tolls? Crit Care [Internet]. 2015; 19(1): 2013-4. Available: http://ccforum.com/content/19/1/171.
    • (2015) Crit Care [Internet] 2015 , vol.19 , Issue.1
    • Van Poucke, S.1    Thomeer, M.2    Hadzic, A.3
  • 2
    • 84928728572 scopus 로고    scopus 로고
    • State of the art review: The data revolution in critical care
    • Ghassemi M, Celi LA, Stone DJ. State of the art review: the data revolution in critical care. Crit Care [Internet]. 2015; 19(1). Available: http://ccforum.com/content/19/1/118.
    • (2015) Crit Care , vol.19 , Issue.1
    • Ghassemi, M.1    Celi, L.A.2    Stone, D.J.3
  • 3
    • 84906877950 scopus 로고    scopus 로고
    • Intelligent data analysis: The best approach for chronic heart failure (CHF) follow up management
    • Mohammadzadeh N, Safdari R, Baraani A, Mohammadzadeh F. Intelligent data analysis: the best approach for chronic heart failure (CHF) follow up management. Acta Inform Med. 2014; 22(4): 263-7. Available: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4216425/pdf/AIM-22-263.pdf. doi: 10.5455/aim.2014.22.263-267
    • (2014) Acta Inform Med , vol.22 , Issue.4 , pp. 263-267
    • Mohammadzadeh, N.1    Safdari, R.2    Baraani, A.3    Mohammadzadeh, F.4
  • 4
  • 7
    • 84906902062 scopus 로고    scopus 로고
    • An overview of free software tools for general data mining information and communication technology electronics and microelectronics (MIPRO
    • Jovic, A, Brkic K, Bogunovic N. An overview of free software tools for general data mining. Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2014 37th International Convention on. IEEE. 2014: 1112-1117.
    • (2014) 2014 37th International Convention on IEEE , pp. 1112-1117
    • Jovic, A.1    Brkic, K.2    Bogunovic, N.3
  • 9
    • 85013974691 scopus 로고    scopus 로고
    • A survey of open source tools for machine learning with big data in the Hadoop ecosystem
    • Springer International Publishing
    • Landset S, Khoshgoftaar TM, Richter AN, Hasanin T. A survey of open source tools for machine learning with big data in the Hadoop ecosystem. J Big Data [Internet]. Springer International Publishing; 2015; 2(1):24. Available: http://www.journalofbigdata.com/content/2/1/24.
    • (2015) J Big Data [Internet] , vol.2 , Issue.1 , pp. 24
    • Landset, S.1    Khoshgoftaar, T.M.2    Richter, A.N.3    Hasanin, T.4
  • 10
    • 37549003336 scopus 로고    scopus 로고
    • Mapreduce: Simplified data processing on large clusters commun
    • Dean J, Ghemawat S. MapReduce: Simplified Data Processing on Large Clusters. Commun ACM [Internet]. 2008; 51(1):1-13. Available: http://www.usenix.org/events/osdi04/tech/full-papers/dean/dean-html/.
    • (2008) ACM , vol.51 , Issue.1 , pp. 1-13
    • Dean, J.1    Ghemawat, S.2
  • 11
    • 84870452716 scopus 로고    scopus 로고
    • Apache Hadoop. Available: http://hadoop.apache.org/.
    • Apache Hadoop
  • 12
    • 77952775707 scopus 로고    scopus 로고
    • Anthony S, Liu H, Murthy R. Hive-A petabyte scale data warehouse using Hadoop F. Li M. M. Moro, S. Ghandeharizadeh, J. R. Haritsa, G. Weikum, M. J. Carey, F. Casati, E. Y. Chang, I. Manolescu, S. Mehrotra, U. Dayal, and V. J. Tsotras, editors, ICDE 2011, March 1-6, 2010, Long Beach, California, USA IEEE
    • Thusoo A, Sarma JS, Jain N, Shao Z, Chakka P, N. Z. 0002, Anthony S, Liu H, Murthy R. Hive-A petabyte scale data warehouse using Hadoop. In F. Li, M. M. Moro, S. Ghandeharizadeh, J. R. Haritsa, G. Weikum, M. J. Carey, F. Casati, E. Y. Chang, I. Manolescu, S. Mehrotra, U. Dayal, and V. J. Tsotras, editors, Proceedings of the 26th International Conference on Data Engineering, ICDE 2010, March 1-6, 2010, Long Beach, California, USA, pages 996-1005. IEEE. 2010.
    • (2011) Proceedings of the 26th International Conference on Data Engineering , pp. 996-1005
    • Thusoo, A.1    Sarma, J.S.2    Jain, N.3    Shao, Z.4    Chakka, P.N.Z.5
  • 15
    • 84870749286 scopus 로고    scopus 로고
    • Apache Mahout. Available: http://mahout.apache.org/.
    • Apache Mahout
  • 17
    • 84900815697 scopus 로고    scopus 로고
    • Fast and interactive analytics over Hadoop data with Spark
    • Zaharia M, Chowdhury M, Das T, Dave A. Fast and interactive analytics over Hadoop data with Spark. USENIX Login. 2012; 37(4):45-51.
    • (2012) USENIX Login , vol.37 , Issue.4 , pp. 45-51
    • Zaharia, M.1    Chowdhury, M.2    Das, T.3    Dave, A.4
  • 19
    • 84953912428 scopus 로고    scopus 로고
    • MLib. Available: https://spark.apache.org/mllib/.
    • MLib
  • 20
    • 84988273389 scopus 로고    scopus 로고
    • An initial study of predictive machine learning analytics on large volumes of historical data for power system applications 2014
    • Zheng J, Dagnino A. An initial study of predictive machine learning analytics on large volumes of historical data for power system applications. In: 2014 IEEE International Conference on Big Data. 2014. 952-59.
    • (2014) IEEE International Conference on Big Data , pp. 952-959
    • Zheng, J.1    Dagnino, A.2
  • 22
    • 84953912430 scopus 로고    scopus 로고
    • SparkR
    • SparkR. Available: http://amplab-extras.github.io/SparkR-pkg/.
  • 23
    • 84953912431 scopus 로고    scopus 로고
    • PySpark
    • PySpark. Available: https://spark.apache.org/docs/0.9.0/python-programming-guide.html.
  • 25
    • 84953912432 scopus 로고    scopus 로고
    • Hall M. Weka and Hadoop. 2013. Available: http://markahall.blogspot.co.uk/2013/10/weka-Andhadooppart-1.html/.
    • (2013) Weka and Hadoop
    • Hall, M.1
  • 29
    • 0021739699 scopus 로고
    • A simplified acute physiology score for ICU patients
    • Le Gall JR, Loirat P, et al. A simplified acute physiology score for ICU patients. Crit Care Med. 1984; 12: 975-977.
    • (1984) Crit Care Med , vol.12 , pp. 975-977
    • Le Gall, J.R.1    Loirat, P.2
  • 30
    • 0027132478 scopus 로고
    • A new simplified acute physiology score (saps II) based on a European/north American Multicenter study
    • Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American Multicenter Study. JAMA. 1993; 270: 2957-2963.
    • (1993) JAMA , vol.270 , pp. 2957-2963
    • Le Gall, J.R.1    Lemeshow, S.2    Saulnier, F.3
  • 31
    • 0031735051 scopus 로고    scopus 로고
    • Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: Results of a multicenter, prospective study. Working group on "sepsis-related problems" of the European Society of Intensive Care Medicine
    • Vincent JL, de Mendonça A, Cantraine F, Moreno R. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Working group on "sepsis-related problems" of the European Society of Intensive Care Medicine. Crit Care Med. 1998; 26:1793-1800.
    • (1998) Crit Care Med. , vol.26 , pp. 1793-1800
    • Vincent, J.L.1    De Mendonça, A.2    Cantraine, F.3    Moreno, R.4
  • 32
    • 37549003336 scopus 로고    scopus 로고
    • Mapreduce: Simplified data processing on large clusters
    • Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters. Communications of the ACM-50th anniversary issue: 1958-2008 [Internet]. 2008;51(1): 1-13. Available: http://www. usenix.org/events/osdi04/tech/full-papers/dean/dean-html/.
    • (2008) Communications of the ACM-50th Anniversary Issue: 1958-2008 , vol.51 , Issue.1 , pp. 1-13
    • Dean, J.1    Ghemawat, S.2
  • 33
    • 84988962477 scopus 로고    scopus 로고
    • Applications of the MapReduce programming framework to clinical big data analysis: Current landscape and future trends
    • Mohammed EA, Far BH, Naugler C. Applications of the MapReduce programming framework to clinical big data analysis: current landscape and future trends. BioData Min [Internet]. 2014; 7(1): 1-23. Available: http://link.springer.com/article/10.1186/1756-0381-7-22. doi: 10.1186/1756-0381-7-22
    • (2014) BioData Min [Internet] , vol.7 , Issue.1 , pp. 7-22
    • Mohammed, E.A.1    Far, B.H.2    Naugler, C.3
  • 34
    • 7444228338 scopus 로고    scopus 로고
    • The CRISP-DM model: The new blueprint for data mining
    • Shearer C. The CRISP-DM model: the new blueprint for data mining. J Data Warehousing. 2000; 5:13-22.
    • (2000) J Data Warehousing , vol.5 , pp. 13-22
    • Shearer, C.1
  • 36
    • 84953881151 scopus 로고    scopus 로고
    • IJCAI 2001 Workshop on empirical methods in artificial intelligence
    • Rish I. An empirical study of the naive bayes classifier. In: IJCAI 2001 Workshop on empirical methods in artificial intelligence; 2001: 41-66. Available: http://www.cc.gatech.edu/~isbell/reading/papers/Rish. pdf.
    • An Empirical Study of the Naive Bayes Classifier , vol.2001 , pp. 41-66
    • Rish, I.1
  • 37
    • 84953912433 scopus 로고    scopus 로고
    • A Naive Bayes machine learning approach to risk prediction using censored time-To-event data
    • Apr 8
    • Wolfson J, Bandyopadhyay S, Elidrisi M, Vazquez-Benitez G, Musgrove D, Adomavicius G, et al. A Naive Bayes machine learning approach to risk prediction using censored, time-To-event data. ARXIV [Internet]. 2014; Apr 8. Available: http://arxiv.org/abs/1404.2124.
    • (2014) ARXIV
    • Wolfson, J.1    Bandyopadhyay, S.2    Elidrisi, M.3    Vazquez-Benitez, G.4    Musgrove, D.5    Adomavicius, G.6
  • 38
    • 0035528674 scopus 로고    scopus 로고
    • Idiot's Bayes-not so stupid after all?
    • Hand DJ, Yu K. Idiot's Bayes-not so stupid after all? International Statistical Review. 2001; 69 (3): 385-398.
    • (2001) International Statistical Review , vol.69 , Issue.3 , pp. 385-398
    • Hand, D.J.1    Yu, K.2
  • 39
    • 84936776946 scopus 로고    scopus 로고
    • Construction the model on the breast cancer survival analysis use support vector machine, logistic regression and decision tree
    • Chao CM, Yu YW, Cheng BW, & Kuo YL. Construction the model on the breast cancer survival analysis use support vector machine, logistic regression and decision tree. J Med Syst. 2014; 38(10): 1-7. Available: http://link.springer.com/article/10.1007%2Fs10916-014-0106-1.
    • (2014) J Med Syst , vol.38 , Issue.10 , pp. 1-7
    • Chao, C.M.1    Yu, Y.W.2    Cheng, B.W.3    Kuo, Y.L.4
  • 40
    • 84903868186 scopus 로고    scopus 로고
    • Decision tree based diagnostic system for moderate to severe obstructive sleep apnea
    • Ting H, Mai YT, Hsu HC, Wu HC, & Tseng MH. Decision tree based diagnostic system for moderate to severe obstructive sleep apnea. J Med Syst. 2014; 38(9):1-10.
    • (2014) J Med Syst , vol.38 , Issue.9 , pp. 1-10
    • Ting, H.1    Mai, Y.T.2    Hsu, H.C.3    Wu, H.C.4    Tseng, M.H.5
  • 41
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan JR. Induction of Decision Trees. Machine Learning. 1986; 1: 81-106.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 42
    • 85161148381 scopus 로고    scopus 로고
    • The elements of statistical learning: Data mining, inference and prediction
    • Hastie T, Tibshirani R, Friedman J, Franklin J. The elements of statistical learning: data mining, inference and prediction. Math Intell. 2005; 27:83-5.
    • (2005) Math Intell , vol.27 , pp. 83-85
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3    Franklin, J.4
  • 45
    • 84920747973 scopus 로고    scopus 로고
    • Relationship of clinical course of illness variables to medical comorbidities in 900 adult outpatients with bipolar disorder
    • Post RM, Altshuler L, Leverich GS, Frye MA, Suppes T, McElroy SL, et al. Relationship of clinical course of illness variables to medical comorbidities in 900 adult outpatients with bipolar disorder. Compr Psychiatry. 2015; 56: 21-28. Available: http://www.sciencedirect.com/science/article/pii/S0010440X14002429. doi: 10.1016/j.comppsych.2014.08.050
    • (2015) Compr Psychiatry , vol.56 , pp. 21-28
    • Post, R.M.1    Altshuler, L.2    Leverich, G.S.3    Ma, F.4    Suppes, T.5    McElroy, S.L.6
  • 46
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • Chang CC, Lin CJ. LIBSVM: a library for support vector machines. ACM TIST. 2011; 2(3):1-27. Available: http://dl.acm.org/citation.cfm?doid=1961189.1961199.
    • (2011) ACM TIST , vol.2 , Issue.3 , pp. 1-27
    • Chang, C.C.1    Lin, C.J.2
  • 47
    • 34249753618 scopus 로고
    • Support vector networks
    • springer.com/article/10.1023%2FA%3A1022627411411
    • Cortes C, Vapnik V. Support vector networks. Machine Learning. 1995; 20: 273-297. Available: http://link.springer.com/article/10.1023%2FA%3A1022627411411.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 48
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles
    • Kuncheva LI, Whitaker CJ. Measures of diversity in classifier ensembles. Machine Learning. 2003; 51: 181-207 Available: http://pages.bangor.ac.uk/~mas00a/papers/lkml.pdf.
    • (2003) Machine Learning , vol.51 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 50
    • 0001963082 scopus 로고    scopus 로고
    • A short introduction to boosting
    • Freund Y, Schapire R, Abe N. A short introduction to boosting. Journal of JSAI.1999; 14(5): 771-780. Available: http://cseweb.ucsd.edu/~yfreund/papers/IntroToBoosting.pdf.
    • (1999) Journal of JSAI , vol.14 , Issue.5 , pp. 771-780
    • Freund, Y.1    Schapire, R.2    Abe, N.3
  • 51
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning. 1999; 24(2):123-140. Available: http://link.springer. com/article/10.1023%2FA%3A1018054314350.
    • (1999) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 52
    • 0030196364 scopus 로고    scopus 로고
    • Stacked regressions
    • Breiman L. Stacked regressions. Machine learning. 1996; 24(1):49-64. Available: http://link.springer. com/article/10.1007%2FBF00117832.
    • (1996) Machine Learning , vol.24 , Issue.1 , pp. 49-64
    • Breiman, L.1
  • 53
    • 84992726552 scopus 로고
    • Estimating attributes analysis and extensions of relief
    • Kononenko I. Estimating Attributes: Analysis and Extensions of RELIEF. In: European Conference on Machine Learning, 171-182, 1994. Available: http://link.springer.com/chapter/10.1007%2F3-540-57868-4-57.
    • (1994) European Conference on Machine Learning , pp. 171-182
    • Kononenko, I.1
  • 54
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R, John GH. Wrappers for feature subset selection. Artificial Intelligence. 1997; 97(1): 273-324. doi: http://dx.doi.org/10.1016/S0004-3702(97)00043-X
    • (1997) Artificial Intelligence , vol.97 , Issue.1 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 55
    • 0742307292 scopus 로고    scopus 로고
    • Orthogonal forward selection and backward elimination algorithms for feature subset selection. Systems, Man, and Cybernetics, Part B: Cybernetics
    • Mao KZ. Orthogonal forward selection and backward elimination algorithms for feature subset selection. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on. 2004; 34(1): 629-634. Available: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1262531.
    • (2004) IEEE Transactions on , vol.34 , Issue.1 , pp. 629-634
    • Mao, K.Z.1
  • 56
    • 3142584551 scopus 로고
    • Genetic algorithms in search, optimization, and machine learning
    • Longman
    • Goldberg DE. Genetic algorithms in search, optimization, and machine learning. 1st Ed. Boston: Addison-Wesley Longman; 1989.
    • (1989) 1st Ed. Boston: Addison-Wesley
    • De, G.1
  • 57
    • 15844394276 scopus 로고    scopus 로고
    • Evolutionary tuning of multiple SVM parameters
    • Friedrichs F, Igel C. Evolutionary tuning of multiple SVM parameters. Neurocomputing. 2005; 64:107-117. Available: http://www.sciencedirect.com/science/article/pii/S0925231204005223.
    • (2005) Neurocomputing , vol.64 , pp. 107-117
    • Friedrichs, F.1    Igel, C.2
  • 59
    • 84928762608 scopus 로고    scopus 로고
    • Summarising and validating test accuracy results across multiple studies for use in clinical practice
    • Riley RD, Ahmed I, Debray TPA, Willis BH, Noordzij JP, Higgins JPT, Deeks J. Summarising and validating test accuracy results across multiple studies for use in clinical practice. Statist. Med. 2015; 34 (13):1097-0258. Available: http://onlinelibrary.wiley.com/doi/10.1002/sim.6471/abstract.
    • (2015) Statist. Med , vol.34 , Issue.13 , pp. 1097-1098
    • Riley, R.D.1    Ahmed, I.2    Tpa, D.3    Willis, B.H.4    Noordzij, J.P.5    Jpt, H.6    Deeks, J.7
  • 61
    • 84924499646 scopus 로고    scopus 로고
    • Stable feature selection for clinical prediction: Exploiting ICD tree structure using Tree-Lasso
    • Kamkar I, Gupta SK, Phung D, Venkatesh S. Stable feature selection for clinical prediction: Exploiting ICD tree structure using Tree-Lasso. J Biomed Inform. 2015; 53: 277-290. Available: http://www.jbiomed-inform.com/article/S1532-0464(14)00263-9/abstract. doi: 10.1016/j.jbi.2014.11.013
    • (2015) J Biomed Inform , vol.53 , pp. 277-290
    • Kamkar, I.1    Gupta, S.K.2    Phung, D.3    Venkatesh, S.4
  • 62
    • 84899685563 scopus 로고    scopus 로고
    • Predictive value of ionized calcium in critically ill patients: An analysis of a large clinical database MIMIC II
    • Zhang Z, Xu X, Ni H, Deng H. Predictive value of ionized calcium in critically ill patients: An analysis of a large clinical database MIMIC II. PLoS ONE. 2014; 9(4): e95204. doi: 10.1371/journal.pone.0095204
    • (2014) PLoS ONE , vol.9 , Issue.4 , pp. e95204
    • Zhang, Z.1    Xu, X.2    Ni, H.3    Deng, H.4
  • 63
    • 84872106815 scopus 로고    scopus 로고
    • Accessing the public MIMIC-II intensive care relational database for clinical research
    • Jan
    • Scott DJ, Lee J, Silva I, Park S, Moody GB, Celi LA, et al. Accessing the public MIMIC-II intensive care relational database for clinical research. BMC Med Inform Decis Mak [Internet]. 2013 Jan; 13(1): 9. Available: http://www.biomedcentral.com/1472-6947/13/9.
    • (2013) BMC Med Inform Decis Mak [Internet] , vol.13 , Issue.1 , pp. 9
    • Scott, D.J.1    Lee, J.2    Silva, I.3    Park, S.4    Moody, G.B.5    Celi, L.A.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.