메뉴 건너뛰기




Volumn 8, Issue 11 11, 2015, Pages 1154-1165

DPT: Differentially private trajectory synthesis using hierarchical reference systems

Author keywords

[No Author keywords available]

Indexed keywords

DISASTER PREVENTION; HIERARCHICAL SYSTEMS; INFORMATION FILTERING; POPULATION STATISTICS; SENSITIVE DATA; TRANSPARENCY; WEARABLE TECHNOLOGY;

EID: 84953852510     PISSN: None     EISSN: 21508097     Source Type: Journal    
DOI: None     Document Type: Chapter
Times cited : (228)

References (28)
  • 1
    • 85199287621 scopus 로고    scopus 로고
    • Taxi trajectory open dataset, Tsinghua university, China
    • Taxi trajectory open dataset, Tsinghua university, China. http://sensor.ee.tsinghua.edu.cn, 2009.
    • (2009)
  • 2
    • 52649110568 scopus 로고    scopus 로고
    • Never walk alone: Uncertainty for anonymity in moving objects databases
    • O. Abul, F. Bonchi, and M. Nanni. Never walk alone: Uncertainty for anonymity in moving objects databases. In ICDE, pages 376-385, 2008.
    • (2008) ICDE , pp. 376-385
    • Abul, O.1    Bonchi, F.2    Nanni, M.3
  • 4
    • 84889607657 scopus 로고    scopus 로고
    • A two-phase algorithm for mining sequential patterns with differential privacy
    • L. Bonomi and L. Xiong. A two-phase algorithm for mining sequential patterns with differential privacy. In CIKM, pages 269-278, 2013.
    • (2013) CIKM , pp. 269-278
    • Bonomi, L.1    Xiong, L.2
  • 5
    • 0036606530 scopus 로고    scopus 로고
    • A framework for generating network-based moving objects
    • T. Brinkhoff. A framework for generating network-based moving objects. GeoInformatica, 6(2):153-180, 2002.
    • (2002) GeoInformatica , vol.6 , Issue.2 , pp. 153-180
    • Brinkhoff, T.1
  • 6
    • 84869393316 scopus 로고    scopus 로고
    • Differentially private sequential data publication via variable-length n-grams
    • R. Chen, G. Acs, and C. Castelluccia. Differentially private sequential data publication via variable-length n-grams. In CCS, pages 638-649, 2012.
    • (2012) CCS , pp. 638-649
    • Chen, R.1    Acs, G.2    Castelluccia, C.3
  • 7
    • 84866022540 scopus 로고    scopus 로고
    • Differentially private transit data publication: a case study on the montreal transportation system
    • R. Chen, B. C. Fung, B. C. Desai, and N. M. Sossou. Differentially private transit data publication: a case study on the montreal transportation system. In KDD, pages 213-221, 2012.
    • (2012) KDD , pp. 213-221
    • Chen, R.1    Fung, B.C.2    Desai, B.C.3    Sossou, N.M.4
  • 8
    • 84874108609 scopus 로고    scopus 로고
    • Privacy-preserving trajectory data publishing by local suppression
    • R. Chen, B. C. M. Fung, N. Mohammed, B. C. Desai, and K. Wang. Privacy-preserving trajectory data publishing by local suppression. Inf. Sci., 231:83-97, 2013.
    • (2013) Inf. Sci. , vol.231 , pp. 83-97
    • Chen, R.1    Fung, B.C.M.2    Mohammed, N.3    Desai, B.C.4    Wang, K.5
  • 11
    • 33746335051 scopus 로고    scopus 로고
    • Differential privacy
    • C. Dwork. Differential privacy. In ICALP, pages 1-12, 2006.
    • (2006) ICALP , pp. 1-12
    • Dwork, C.1
  • 12
    • 33745556605 scopus 로고    scopus 로고
    • Calibrating noise to sensitivity in private data analysis
    • C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis. In TCC, pages 265-284, 2006.
    • (2006) TCC , pp. 265-284
    • Dwork, C.1    McSherry, F.2    Nissim, K.3    Smith, A.4
  • 13
    • 78650518102 scopus 로고    scopus 로고
    • Boosting the accuracy of differentially private histograms through consistency
    • M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy of differentially private histograms through consistency. PVLDB, 3(1):1021-1032, 2010.
    • (2010) PVLDB , vol.3 , Issue.1 , pp. 1021-1032
    • Hay, M.1    Rastogi, V.2    Miklau, G.3    Suciu, D.4
  • 15
    • 38049013788 scopus 로고    scopus 로고
    • Mining trajectory patterns using hidden markov models
    • Springer
    • H. Jeung, H. T. Shen, and X. Zhou. Mining trajectory patterns using hidden markov models. In DaWaK, pages 470-480. Springer, 2007.
    • (2007) DaWaK , pp. 470-480
    • Jeung, H.1    Shen, H.T.2    Zhou, X.3
  • 16
  • 17
    • 70849116921 scopus 로고    scopus 로고
    • Privacy integrated queries: an extensible platform for privacy-preserving data analysis
    • F. McSherry. Privacy integrated queries: an extensible platform for privacy-preserving data analysis. In SIGMOD, pages 19-30, 2009.
    • (2009) SIGMOD , pp. 19-30
    • McSherry, F.1
  • 21
    • 84881363049 scopus 로고    scopus 로고
    • Differentially private grids for geospatial data
    • W. Qardaji, W. Yang, and N. Li. Differentially private grids for geospatial data. In ICDE, pages 757-768, 2013.
    • (2013) ICDE , pp. 757-768
    • Qardaji, W.1    Yang, W.2    Li, N.3
  • 22
    • 84884388019 scopus 로고    scopus 로고
    • Publishing trajectory with differential privacy: A priori vs. a posteriori sampling mechanisms
    • D. Shao, K. Jiang, T. Kister, S. Bressan, and K.-L. Tan. Publishing trajectory with differential privacy: A priori vs. a posteriori sampling mechanisms. In DEXA, pages 357-365, 2013.
    • (2013) DEXA , pp. 357-365
    • Shao, D.1    Jiang, K.2    Kister, T.3    Bressan, S.4    Tan, K.-L.5
  • 23
    • 77149139158 scopus 로고    scopus 로고
    • Limits of predictability in human mobility
    • C. Song, Z. Qu, N. Blumm, and A.-L. Barabsi. Limits of predictability in human mobility. Science, 327(5968):1018-1021, 2010.
    • (2010) Science , vol.327 , Issue.5968 , pp. 1018-1021
    • Song, C.1    Qu, Z.2    Blumm, N.3    Barabsi, A.-L.4
  • 24
    • 84880549017 scopus 로고    scopus 로고
    • Calibrating trajectory data for similarity-based analysis
    • H. Su, K. Zheng, H. Wang, J. Huang, and X. Zhou. Calibrating trajectory data for similarity-based analysis. In SIGMOD, pages 833-844, 2013.
    • (2013) SIGMOD , pp. 833-844
    • Su, H.1    Zheng, K.2    Wang, H.3    Huang, J.4    Zhou, X.5
  • 25
    • 51349142350 scopus 로고    scopus 로고
    • Privacy preservation in the publication of trajectories
    • M. Terrovitis and N. Mamoulis. Privacy preservation in the publication of trajectories. In MDM, pages 65-72, 2008.
    • (2008) MDM , pp. 65-72
    • Terrovitis, M.1    Mamoulis, N.2
  • 26
    • 79959998772 scopus 로고    scopus 로고
    • iReduct: Differential privacy with reduced related errors
    • X. Xiao, G. Bender, M. Hay, and J. Gehrke. iReduct: Differential privacy with reduced related errors. In SIGMOD, pages 229-240, 2011.
    • (2011) SIGMOD , pp. 229-240
    • Xiao, X.1    Bender, G.2    Hay, M.3    Gehrke, J.4
  • 27
    • 84940860294 scopus 로고    scopus 로고
    • Differentially private frequent sequence mining via sampling-based candidate pruning
    • S. Xu, S. Su, X. Cheng, Z. Li, and L. Xiong. Differentially private frequent sequence mining via sampling-based candidate pruning. In ICDE, 2015.
    • (2015) ICDE
    • Xu, S.1    Su, S.2    Cheng, X.3    Li, Z.4    Xiong, L.5
  • 28
    • 70349095406 scopus 로고    scopus 로고
    • Anonymizing moving objects: How to hide a mob in a crowd?
    • R. Yarovoy, F. Bonchi, L. V. S. Lakshmanan, and W. H. Wang. Anonymizing moving objects: How to hide a mob in a crowd? In EDBT, pages 72-83, 2009.
    • (2009) EDBT , pp. 72-83
    • Yarovoy, R.1    Bonchi, F.2    Lakshmanan, L.V.S.3    Wang, W.H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.