메뉴 건너뛰기




Volumn 35, Issue 11, 2016, Pages 1866-1879

Comparing net survival estimators of cancer patients

Author keywords

Cancer; Estimators; Excess mortality; Mean squared error; Net survival; Simulation study

Indexed keywords

AGE STANDARDISED EDERER II ESTIMATOR; ARTICLE; BREAST CANCER; CANCER PATIENT; CANCER REGISTRY; CONTROLLED STUDY; ERROR; FEMALE; FINITE MIXTURE MODEL; FOLLOW UP; HUMAN; LONG TERM SURVIVAL; LUNG CANCER; MAJOR CLINICAL STUDY; MALE; MEAN SQUARED ERROR; MORTALITY; NET SURVIVAL; POHAR PERME ESTIMATOR; PROSTATE CANCER; RECTUM CANCER; SIMULATION; STATISTICAL ANALYSIS; STATISTICAL MODEL; STOMACH CANCER; SURVIVAL; SURVIVAL RATE; THYROID CANCER; UNSTANDARDISED EDERER II ESTIMATOR; ADOLESCENT; ADULT; AGE; AGED; COMPUTER SIMULATION; EPIDEMIOLOGY; FINLAND; MIDDLE AGED; NEOPLASM; REGISTER; SURVIVAL ANALYSIS; VERY ELDERLY;

EID: 84953776467     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.6833     Document Type: Article
Times cited : (23)

References (32)
  • 1
    • 0025285232 scopus 로고
    • Relative survival and the estimation of net survival: elements for further discussion
    • Estève J, Benhamou E, Croasdale M, Raymond L. Relative survival and the estimation of net survival: elements for further discussion. Statistics in Medicine. 1990; 9: 529-538.
    • (1990) Statistics in Medicine , vol.9 , pp. 529-538
    • Estève, J.1    Benhamou, E.2    Croasdale, M.3    Raymond, L.4
  • 2
    • 84860990672 scopus 로고    scopus 로고
    • Interpretability and importance of functionals in competing risks and multistate models
    • Andersen PK, Keiding N. Interpretability and importance of functionals in competing risks and multistate models. Statistics in Medicine. 2012; 31: 1074-1088.
    • (2012) Statistics in Medicine , vol.31 , pp. 1074-1088
    • Andersen, P.K.1    Keiding, N.2
  • 4
    • 84962974321 scopus 로고
    • Instructions to IBM 650 Programmers in Processing Survival Computations. Methodological Note No. 10, End Results Evaluation Section, National Cancer Institute, Bethesda, MD
    • Ederer F, Heise H. Instructions to IBM 650 Programmers in Processing Survival Computations. Methodological Note No. 10, End Results Evaluation Section, National Cancer Institute, Bethesda, MD, 1959.
    • (1959)
    • Ederer, F.1    Heise, H.2
  • 5
    • 0020390843 scopus 로고
    • Cancer survival corrected for heterogeneity in patient withdrawal
    • Hakulinen T. Cancer survival corrected for heterogeneity in patient withdrawal. Biometrics. 1982; 38: 933-942.
    • (1982) Biometrics , vol.38 , pp. 933-942
    • Hakulinen, T.1
  • 9
  • 12
    • 84901565624 scopus 로고    scopus 로고
    • Pohar Perme M. Informative censoring in relative survival
    • Rebolj Kodre A. Pohar Perme M. Informative censoring in relative survival. Statistics in Medicine. 2013; 32: 4791-4802.
    • (2013) Statistics in Medicine , vol.32 , pp. 4791-4802
    • Rebolj Kodre, A.1
  • 15
    • 84929957518 scopus 로고    scopus 로고
    • Choosing the net survival method for cancer survival estimation
    • Seppä K, Hakulinen T, Pokhrel A. Choosing the net survival method for cancer survival estimation. European Journal of Cancer. 2015; 51: 1123-1129.
    • (2015) European Journal of Cancer , vol.51 , pp. 1123-1129
    • Seppä, K.1    Hakulinen, T.2    Pokhrel, A.3
  • 16
    • 84858279925 scopus 로고    scopus 로고
    • Estimating net survival: the importance of allowing for informative censoring
    • Danieli C, Remontet L, Bossard N, Roche L, Belot A. Estimating net survival: the importance of allowing for informative censoring. Statistics in Medicine. 2012; 31: 775-786.
    • (2012) Statistics in Medicine , vol.31 , pp. 775-786
    • Danieli, C.1    Remontet, L.2    Bossard, N.3    Roche, L.4    Belot, A.5
  • 17
    • 0029801937 scopus 로고    scopus 로고
    • An alternative approach to monitoring cancer patient survival
    • Brenner H, Gefeller O. An alternative approach to monitoring cancer patient survival. Cancer. 1996; 78: 2004-2010.
    • (1996) Cancer , vol.78 , pp. 2004-2010
    • Brenner, H.1    Gefeller, O.2
  • 18
    • 1642513836 scopus 로고    scopus 로고
    • Period analysis for "up-to-date" cancer survival data: Theory, empirical evaluation, computational realisation and applications
    • Brenner H, Gefeller O, Hakulinen T. Period analysis for "up-to-date" cancer survival data: Theory, empirical evaluation, computational realisation and applications. European Journal Cancer. 2004; 40: 326-335.
    • (2004) European Journal Cancer , vol.40 , pp. 326-335
    • Brenner, H.1    Gefeller, O.2    Hakulinen, T.3
  • 19
    • 84962951923 scopus 로고    scopus 로고
    • STATA computer program strs.ado, version 1.4.1 (18 Feb 2015). Available in:[Accessed on 17 April 2015]
    • Dickman PW, Coviello E, Hills M. STATA computer program strs.ado, version 1.4.1 (18 Feb 2015). Available in: http://www.pauldickman.com/rsmodel/stata/_colon [Accessed on 17 April 2015], 2015.
    • (2015)
    • Dickman, P.W.1    Coviello, E.2    Hills, M.3
  • 20
    • 85011378072 scopus 로고    scopus 로고
    • Estimating and modeling relative survival
    • Dickman PW, Coviello E. Estimating and modeling relative survival. The Stata Journal. 2015; 15: 186-215.
    • (2015) The Stata Journal , vol.15 , pp. 186-215
    • Dickman, P.W.1    Coviello, E.2
  • 22
    • 0001899731 scopus 로고
    • The Natural Duration of Cancer
    • His Majestys Stationery Office: London
    • Greenwood M. 1926. The Natural Duration of Cancer. In Reports on Public Health and Medical Subjects. His Majestys Stationery Office: London; 1-26.
    • (1926) Reports on Public Health and Medical Subjects , pp. 1-26
    • Greenwood, M.1
  • 24
    • 55249120168 scopus 로고    scopus 로고
    • How to interpret the relative survival ratios of cancer patients
    • Pokhrel A, Hakulinen T. How to interpret the relative survival ratios of cancer patients. European Journal of Cancer. 2008; 44: 2661-2667.
    • (2008) European Journal of Cancer , vol.44 , pp. 2661-2667
    • Pokhrel, A.1    Hakulinen, T.2
  • 25
    • 5344238942 scopus 로고    scopus 로고
    • Standard cancer patient population for age standardising survival ratios
    • Corazziari I, Quinn M, Capocaccia R. Standard cancer patient population for age standardising survival ratios. European Journal of Cancer. 2004; 40: 2307-2316.
    • (2004) European Journal of Cancer , vol.40 , pp. 2307-2316
    • Corazziari, I.1    Quinn, M.2    Capocaccia, R.3
  • 28
    • 0024596532 scopus 로고
    • Flexible regression models with cubic splines
    • Durrleman S, Simon R. Flexible regression models with cubic splines. Statistics in Medicine. 1989; 8: 551-561.
    • (1989) Statistics in Medicine , vol.8 , pp. 551-561
    • Durrleman, S.1    Simon, R.2
  • 29
    • 78349251306 scopus 로고    scopus 로고
    • Cure fraction model with random effects for regional variation in cancer survival
    • Seppä K, Hakulinen T, Kim H-J, Läärä E. Cure fraction model with random effects for regional variation in cancer survival. Statistics in Medicine. 2010; 29: 2781-2793.
    • (2010) Statistics in Medicine , vol.29 , pp. 2781-2793
    • Seppä, K.1    Hakulinen, T.2    Kim, H.-J.3    Läärä, E.4
  • 31
    • 84964927929 scopus 로고    scopus 로고
    • R Development Core Team. . R Foundation for Statistical Computing: Vienna, Austria, Available from:[Accessed 21 October 2015].
    • R Development Core Team. R: A Language and Environment for Statistical Computing, version 3.2.2. R Foundation for Statistical Computing: Vienna, Austria, 2015. Available from: http://www.R-project.org[Accessed 21 October 2015].
    • (2015) R: A Language and Environment for Statistical Computing, version 3.2.2
  • 32
    • 84962968331 scopus 로고    scopus 로고
    • popEpi: Functions for Epidemiological Analysis using Population Data. R package version 0.2.1. Available from:[Accessed 21 October 2015].
    • Miettinen J, Rantanen M, Seppä K, Pitkäniemi J. popEpi: Functions for Epidemiological Analysis using Population Data. R package version 0.2.1. Available from: http://CRAN.R-project.org/package=popEpi [Accessed 21 October 2015].
    • Miettinen, J.1    Rantanen, M.2    Seppä, K.3    Pitkäniemi, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.