메뉴 건너뛰기




Volumn 46, Issue , 2016, Pages 543-557

An improved intuitionistic fuzzy c-means clustering algorithm incorporating local information for brain image segmentation

Author keywords

Fuzzy c means; Image segmentation; Intuitionistic fuzzy c means; Intuitionistic fuzzy sets; Magnetic resonance imaging

Indexed keywords

ALGORITHMS; BRAIN MAPPING; CLUSTERING ALGORITHMS; COMPUTER AIDED DIAGNOSIS; FUZZY CLUSTERING; FUZZY SETS; FUZZY SYSTEMS; MAGNETIC RESONANCE IMAGING;

EID: 84953305831     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2015.12.022     Document Type: Article
Times cited : (172)

References (40)
  • 1
  • 2
    • 25844489923 scopus 로고    scopus 로고
    • MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization
    • [2] Shen, S., Sandham, W., Granat, M., Sterr, A., MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization. IEEE Trans. Inf. Technol. Biomed. 9:3 (2005), 459–467.
    • (2005) IEEE Trans. Inf. Technol. Biomed. , vol.9 , Issue.3 , pp. 459-467
    • Shen, S.1    Sandham, W.2    Granat, M.3    Sterr, A.4
  • 5
    • 0026197323 scopus 로고
    • Automatic segmentation of head MRI images by knowledge guided thresholding
    • [5] Suzuki, H., Toriwaki, J.I., Automatic segmentation of head MRI images by knowledge guided thresholding. Comput. Med. Imaging Graph. 15:4 (1991), 233–240.
    • (1991) Comput. Med. Imaging Graph. , vol.15 , Issue.4 , pp. 233-240
    • Suzuki, H.1    Toriwaki, J.I.2
  • 6
    • 1842452933 scopus 로고    scopus 로고
    • Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains
    • [6] Rohlfing, T., Brandt, R., Menzel, R., Maurer, C.R., Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. Neuroimage 21:4 (2004), 1428–1442.
    • (2004) Neuroimage , vol.21 , Issue.4 , pp. 1428-1442
    • Rohlfing, T.1    Brandt, R.2    Menzel, R.3    Maurer, C.R.4
  • 7
    • 0031283432 scopus 로고    scopus 로고
    • Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks
    • [7] Reddick, W.E., Glass, J.O., Cook, E.N., Elkin, T.D., Deaton, R.J., Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks. IEEE Trans. Med. Imaging 16:6 (1997), 911–918.
    • (1997) IEEE Trans. Med. Imaging , vol.16 , Issue.6 , pp. 911-918
    • Reddick, W.E.1    Glass, J.O.2    Cook, E.N.3    Elkin, T.D.4    Deaton, R.J.5
  • 9
    • 79959576791 scopus 로고    scopus 로고
    • A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI
    • [9] Li, C., Huang, R., Ding, Z., Gatenby, J.C., Metaxas, D.N., Gore, J.C., A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans. Image Process. 20:7 (2011), 2007–2016.
    • (2011) IEEE Trans. Image Process. , vol.20 , Issue.7 , pp. 2007-2016
    • Li, C.1    Huang, R.2    Ding, Z.3    Gatenby, J.C.4    Metaxas, D.N.5    Gore, J.C.6
  • 12
    • 0004008854 scopus 로고
    • Pattern Recognition with Fuzzy Objective Function Algorithms
    • Kluwer Academic Publishers
    • [12] Bezdek, J.C., Pattern Recognition with Fuzzy Objective Function Algorithms. 1981, Kluwer Academic Publishers.
    • (1981)
    • Bezdek, J.C.1
  • 13
    • 0032070619 scopus 로고    scopus 로고
    • Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions
    • [13] Tolias, Y., Panas, S.M., Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions. IEEE Trans. Syst. Man Cybern. 28:3 (1998), 359–369.
    • (1998) IEEE Trans. Syst. Man Cybern. , vol.28 , Issue.3 , pp. 359-369
    • Tolias, Y.1    Panas, S.M.2
  • 14
    • 0035502877 scopus 로고    scopus 로고
    • Spatial models for fuzzy clustering
    • [14] Pham, D.L., Spatial models for fuzzy clustering. Comput. Vision Image Underst. 84:2 (2001), 285–297.
    • (2001) Comput. Vision Image Underst. , vol.84 , Issue.2 , pp. 285-297
    • Pham, D.L.1
  • 15
  • 16
    • 0036489378 scopus 로고    scopus 로고
    • A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data
    • [16] Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, A.A., Moriarty, T., A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imaging 21:3 (2002), 193–199.
    • (2002) IEEE Trans. Med. Imaging , vol.21 , Issue.3 , pp. 193-199
    • Ahmed, M.N.1    Yamany, S.M.2    Mohamed, N.3    Farag, A.A.4    Moriarty, T.5
  • 17
    • 3543098627 scopus 로고    scopus 로고
    • Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure
    • [17] Chen, S., Zhang, D., Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans. Syst. Man Cybern. 34:4 (2004), 1907–1916.
    • (2004) IEEE Trans. Syst. Man Cybern. , vol.34 , Issue.4 , pp. 1907-1916
    • Chen, S.1    Zhang, D.2
  • 18
    • 1542272476 scopus 로고    scopus 로고
    • MR brain image segmentation using an enhanced fuzzy c-means algorithm
    • [18] Szilagyi, L., Benyo, Z., Szilagyi, S.M., Adam, H.S., MR brain image segmentation using an enhanced fuzzy c-means algorithm. Annu. Int. Conf. IEEE EMB 1 (2003), 724–726.
    • (2003) Annu. Int. Conf. IEEE EMB , vol.1 , pp. 724-726
    • Szilagyi, L.1    Benyo, Z.2    Szilagyi, S.M.3    Adam, H.S.4
  • 19
    • 33750512945 scopus 로고    scopus 로고
    • Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation
    • [19] Cai, W., Chen, S., Zhang, D., Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recognit. 40:3 (2007), 825–838.
    • (2007) Pattern Recognit. , vol.40 , Issue.3 , pp. 825-838
    • Cai, W.1    Chen, S.2    Zhang, D.3
  • 20
    • 77951276538 scopus 로고    scopus 로고
    • A robust fuzzy local information C-means clustering algorithm
    • [20] Krinidis, S., Chatzis, V., A robust fuzzy local information C-means clustering algorithm. IEEE Trans. Image Process. 19:5 (2010), 1328–1337.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.5 , pp. 1328-1337
    • Krinidis, S.1    Chatzis, V.2
  • 21
    • 0002740725 scopus 로고
    • Intuitionistic fuzzy sets
    • [21] Atanassov, K.T., Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20:1 (1986), 87–96.
    • (1986) Fuzzy Sets Syst. , vol.20 , Issue.1 , pp. 87-96
    • Atanassov, K.T.1
  • 23
    • 77958600084 scopus 로고    scopus 로고
    • Intuitionistic fuzzy c-means clustering algorithms
    • [23] Xu, Z., Wu, J., Intuitionistic fuzzy c-means clustering algorithms. J. Syst. Eng. Electron. 21:4 (2010), 580–590.
    • (2010) J. Syst. Eng. Electron. , vol.21 , Issue.4 , pp. 580-590
    • Xu, Z.1    Wu, J.2
  • 24
    • 34248666540 scopus 로고
    • Fuzzy sets
    • [24] Zadeh, L.A., Fuzzy sets. Inf. Control 8:3 (1965), 338–353.
    • (1965) Inf. Control , vol.8 , Issue.3 , pp. 338-353
    • Zadeh, L.A.1
  • 25
    • 0002516156 scopus 로고
    • Fuzzy Measures and Fuzzy Integrals – A Survey
    • North-Holland
    • [25] Sugeno, M., Fuzzy Measures and Fuzzy Integrals – A Survey. 1977, North-Holland.
    • (1977)
    • Sugeno, M.1
  • 26
    • 0018668763 scopus 로고
    • On the measure of fuzziness and negation. Part I: Membership in the unit interval
    • [26] Yager, R.R., On the measure of fuzziness and negation. Part I: Membership in the unit interval. Int. J. Gen. Syst., 1979, 221–229.
    • (1979) Int. J. Gen. Syst. , pp. 221-229
    • Yager, R.R.1
  • 27
    • 0000327043 scopus 로고
    • On the measure of fuzziness and negation. Part II: Lattices
    • [27] Yager, R.R., On the measure of fuzziness and negation. Part II: Lattices. Inf. Control 44:3 (1979), 236–260.
    • (1979) Inf. Control , vol.44 , Issue.3 , pp. 236-260
    • Yager, R.R.1
  • 28
    • 34250752250 scopus 로고    scopus 로고
    • Some similarity measures of intuitionistic fuzzy sets and their applications to multiple attribute decision making
    • [28] Xu, Z., Some similarity measures of intuitionistic fuzzy sets and their applications to multiple attribute decision making. Fuzzy Optim. Decis. Mak. 6:2 (2007), 109–121.
    • (2007) Fuzzy Optim. Decis. Mak. , vol.6 , Issue.2 , pp. 109-121
    • Xu, Z.1
  • 29
    • 43949161247 scopus 로고
    • Similarity measure between fuzzy sets and between elements
    • [29] Hyung, L.K., Song, Y.S., Lee, K.M., Similarity measure between fuzzy sets and between elements. Fuzzy Sets Syst. 62:3 (1994), 291–293.
    • (1994) Fuzzy Sets Syst. , vol.62 , Issue.3 , pp. 291-293
    • Hyung, L.K.1    Song, Y.S.2    Lee, K.M.3
  • 30
    • 0001371650 scopus 로고    scopus 로고
    • New similarity measures on fuzzy sets and on elements
    • [30] Wang, W.J., New similarity measures on fuzzy sets and on elements. Fuzzy Sets Syst. 85:3 (1997), 305–309.
    • (1997) Fuzzy Sets Syst. , vol.85 , Issue.3 , pp. 305-309
    • Wang, W.J.1
  • 31
    • 26844545537 scopus 로고    scopus 로고
    • New similarity measures between intuitionistic fuzzy sets and between elements
    • [31] Liu, H.W., New similarity measures between intuitionistic fuzzy sets and between elements. Math. Comput. Modell. 42:1 (2005), 61–70.
    • (2005) Math. Comput. Modell. , vol.42 , Issue.1 , pp. 61-70
    • Liu, H.W.1
  • 33
    • 0000041473 scopus 로고    scopus 로고
    • Distances between intuitionistic fuzzy sets
    • [33] Szmidt, E., Kacprzyk, J., Distances between intuitionistic fuzzy sets. Fuzzy Sets Syst. 114:3 (2000), 505–518.
    • (2000) Fuzzy Sets Syst. , vol.114 , Issue.3 , pp. 505-518
    • Szmidt, E.1    Kacprzyk, J.2
  • 34
    • 0028686711 scopus 로고
    • Brain segmentation and white matter lesion detection in MR images
    • [34] Zijdenbos, A.P., Dawant, B.M., Brain segmentation and white matter lesion detection in MR images. Crit. Rev. Biomed. Eng. 22:5-6 (1994), 401–465.
    • (1994) Crit. Rev. Biomed. Eng. , vol.22 , Issue.5-6 , pp. 401-465
    • Zijdenbos, A.P.1    Dawant, B.M.2
  • 35
    • 84984918025 scopus 로고    scopus 로고
    • BrainWeb [online], available:.
    • [35] BrainWeb [online], available: http://www.brainweb.bic.mni.mcgill.ca/brainweb.
  • 36
    • 84984900324 scopus 로고    scopus 로고
    • Internet Brain Segmentation Repository (IBSR)[online], available:.
    • [36] Internet Brain Segmentation Repository (IBSR)[online], available: http://www.cma.mgh.harvard.edu/ibsr/.
  • 37
    • 84984900328 scopus 로고    scopus 로고
    • Brain Extraction Tool (BET) [online], available:.
    • [37] Brain Extraction Tool (BET) [online], available: http://www.fmrib.ox.ac.uk/fsl/.
  • 38
    • 79960535211 scopus 로고    scopus 로고
    • A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
    • [38] Derrac, J., García, S., Molina, D., Herrera, F., A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1:1 (2011), 3–18.
    • (2011) Swarm Evol. Comput. , vol.1 , Issue.1 , pp. 3-18
    • Derrac, J.1    García, S.2    Molina, D.3    Herrera, F.4
  • 39
    • 84964052024 scopus 로고    scopus 로고
    • Performance enhancement of mental task classification using EEG signal: a study of multivariate feature selection methods
    • [39] Gupta, A., Agrawal, R.K., Kaur, B., Performance enhancement of mental task classification using EEG signal: a study of multivariate feature selection methods. Soft Comput., 2014, 1–14.
    • (2014) Soft Comput. , pp. 1-14
    • Gupta, A.1    Agrawal, R.K.2    Kaur, B.3
  • 40
    • 0001750957 scopus 로고
    • Approximations of the critical region of the Friedman statistic
    • [40] Iman, R.L., Davenport, J.M., Approximations of the critical region of the Friedman statistic. Commun. Stat. Theory Methods 9:6 (1980), 571–595.
    • (1980) Commun. Stat. Theory Methods , vol.9 , Issue.6 , pp. 571-595
    • Iman, R.L.1    Davenport, J.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.