메뉴 건너뛰기




Volumn 7, Issue , 2016, Pages 144-147

Transcriptional profiling of the epigenetic regulator Smchd1

Author keywords

Epigenetics; RNA sequencing; Sample variability; Voom

Indexed keywords

STRUCTURAL MAINTENANCE OF CHROMOSOMES HINGE DOMAIN 1 PROTEIN; TRANSCRIPTION FACTOR; UNCLASSIFIED DRUG;

EID: 84953212282     PISSN: 22135960     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.gdata.2015.12.027     Document Type: Article
Times cited : (10)

References (20)
  • 1
    • 42649100978 scopus 로고    scopus 로고
    • SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation
    • Blewitt M.E., et al. SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation. Nat. Genet. 2008, 40(5):663-669.
    • (2008) Nat. Genet. , vol.40 , Issue.5 , pp. 663-669
    • Blewitt, M.E.1
  • 2
    • 84865097073 scopus 로고    scopus 로고
    • Smchd1-dependent and -independent pathways determine developmental dynamics of CpG island methylation on the inactive X chromosome
    • Gendrel A.V., et al. Smchd1-dependent and -independent pathways determine developmental dynamics of CpG island methylation on the inactive X chromosome. Dev. Cell 2012, 23(2):265-279.
    • (2012) Dev. Cell , vol.23 , Issue.2 , pp. 265-279
    • Gendrel, A.V.1
  • 3
    • 84879817115 scopus 로고    scopus 로고
    • Smchd1 regulates a subset of autosomal genes subject to monoallelic expression in addition to being critical for X inactivation
    • Mould A.W., et al. Smchd1 regulates a subset of autosomal genes subject to monoallelic expression in addition to being critical for X inactivation. Epigenetics Chromatin 2013, 6(1):19.
    • (2013) Epigenetics Chromatin , vol.6 , Issue.1 , pp. 19
    • Mould, A.W.1
  • 4
    • 84881287607 scopus 로고    scopus 로고
    • Epigenetic functions of Smchd1 repress gene clusters on the inactive X chromosome and on autosomes
    • Gendrel A.V., et al. Epigenetic functions of Smchd1 repress gene clusters on the inactive X chromosome and on autosomes. Mol. Cell. Biol. 2013, 33(16):3150-3165.
    • (2013) Mol. Cell. Biol. , vol.33 , Issue.16 , pp. 3150-3165
    • Gendrel, A.V.1
  • 5
    • 84936060356 scopus 로고    scopus 로고
    • Genome-wide binding and mechanistic analyses of Smchd1-mediated epigenetic regulation
    • Chen K., et al. Genome-wide binding and mechanistic analyses of Smchd1-mediated epigenetic regulation. Proc. Natl. Acad. Sci. U. S. A. 2015, 112(27):E3535-E3544.
    • (2015) Proc. Natl. Acad. Sci. U. S. A. , vol.112 , Issue.27 , pp. E3535-E3544
    • Chen, K.1
  • 6
    • 84874870145 scopus 로고    scopus 로고
    • Epigenetic regulator Smchd1 functions as a tumor suppressor
    • Leong H.S., et al. Epigenetic regulator Smchd1 functions as a tumor suppressor. Cancer Res. 2013, 73(5):1591-1599.
    • (2013) Cancer Res. , vol.73 , Issue.5 , pp. 1591-1599
    • Leong, H.S.1
  • 7
    • 84870516109 scopus 로고    scopus 로고
    • Digenic inheritance of an SMCHD1 mutation and an FSHD-permissive D4Z4 allele causes facioscapulohumeral muscular dystrophy type 2
    • Lemmers R.J., et al. Digenic inheritance of an SMCHD1 mutation and an FSHD-permissive D4Z4 allele causes facioscapulohumeral muscular dystrophy type 2. Nat. Genet. 2012, 44(12):1370-1374.
    • (2012) Nat. Genet. , vol.44 , Issue.12 , pp. 1370-1374
    • Lemmers, R.J.1
  • 8
    • 84885298881 scopus 로고    scopus 로고
    • The FSHD2 gene SMCHD1 is a modifier of disease severity in families affected by FSHD1
    • Sacconi S., et al. The FSHD2 gene SMCHD1 is a modifier of disease severity in families affected by FSHD1. Am. J. Hum. Genet. 2013, 93(4):744-751.
    • (2013) Am. J. Hum. Genet. , vol.93 , Issue.4 , pp. 744-751
    • Sacconi, S.1
  • 9
    • 84929270500 scopus 로고    scopus 로고
    • Diagnostic approach for FSHD revisited: SMCHD1 mutations cause FSHD2 and act as modifiers of disease severity in FSHD1
    • Larsen M., et al. Diagnostic approach for FSHD revisited: SMCHD1 mutations cause FSHD2 and act as modifiers of disease severity in FSHD1. Eur. J. Hum. Genet. 2015, 23(6):808-816.
    • (2015) Eur. J. Hum. Genet. , vol.23 , Issue.6 , pp. 808-816
    • Larsen, M.1
  • 11
    • 84878580738 scopus 로고    scopus 로고
    • The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote
    • Liao Y., Smyth G.K., Shi W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 2013, 41(10).
    • (2013) Nucleic Acids Res. , vol.41 , Issue.10
    • Liao, Y.1    Smyth, G.K.2    Shi, W.3
  • 12
    • 84897397058 scopus 로고    scopus 로고
    • FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features
    • Liao Y., Smyth G.K., Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30(7):923-930.
    • (2014) Bioinformatics , vol.30 , Issue.7 , pp. 923-930
    • Liao, Y.1    Smyth, G.K.2    Shi, W.3
  • 13
    • 75249087100 scopus 로고    scopus 로고
    • EdgeR: a Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson M.D., McCarthy D.J., Smyth G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26(1):139-140.
    • (2010) Bioinformatics , vol.26 , Issue.1 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 14
    • 84926507971 scopus 로고    scopus 로고
    • Limma powers differential expression analyses for RNA-sequencing and microarray studies
    • Ritchie M.E., et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43(7).
    • (2015) Nucleic Acids Res. , vol.43 , Issue.7
    • Ritchie, M.E.1
  • 15
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • Robinson M.D., Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010, 11(3):R25.
    • (2010) Genome Biol. , vol.11 , Issue.3 , pp. R25
    • Robinson, M.D.1    Oshlack, A.2
  • 16
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical bayes methods for assessing differential expression in microarray experiments
    • Smyth G.K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 2004, 3. (p. Article3).
    • (2004) Stat. Appl. Genet. Mol. Biol. , vol.3
    • Smyth, G.K.1
  • 17
    • 84896735766 scopus 로고    scopus 로고
    • Voom: precision weights unlock linear model analysis tools for RNA-seq read counts
    • Law C.W., et al. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014, 15(2):R29.
    • (2014) Genome Biol. , vol.15 , Issue.2 , pp. R29
    • Law, C.W.1
  • 18
    • 84936076693 scopus 로고    scopus 로고
    • Why weight? Modelling sample and observational level variability improves power in RNA-seq analyses
    • Liu R., et al. Why weight? Modelling sample and observational level variability improves power in RNA-seq analyses. Nucleic Acids Res. 2015, 43(15).
    • (2015) Nucleic Acids Res. , vol.43 , Issue.15
    • Liu, R.1
  • 19
    • 0001677717 scopus 로고
    • Controlling the false discovery rate - a practical and powerful approach to multiple testing
    • Benjamini Y., Hochberg Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57(1):289-300.
    • (1995) J. R. Stat. Soc. Ser. B Methodol. , vol.57 , Issue.1 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 20
    • 0036012343 scopus 로고    scopus 로고
    • Replicated microarray data
    • Lonnstedt I., Speed T.P. Replicated microarray data. Stat. Sin. 2002, 12:31-46.
    • (2002) Stat. Sin. , vol.12 , pp. 31-46
    • Lonnstedt, I.1    Speed, T.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.