메뉴 건너뛰기




Volumn 2, Issue 14, 2015, Pages 3-15

SentiRuEval: Testing Object-oriented sentiment analysis systems in Russian

Author keywords

Aspect words; Collection labeling; Evaluation; Sentiment analysis; Users review

Indexed keywords


EID: 84952793847     PISSN: 22217932     EISSN: 20757182     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (44)

References (25)
  • 4
    • 84884951221 scopus 로고    scopus 로고
    • An unsupervised aspect detection model for sentiment analysis of reviews
    • Springer, Berlin, Heidelberg
    • Bagheri A., Saraee M., de Jong F. (2013), An Unsupervised Aspect Detection Model for Sentiment Analysis of Reviews, in Natural Language Processing and Information Systems, Springer, Berlin, Heidelberg, pp. 140-151.
    • (2013) Natural Language Processing and Information Systems , pp. 140-151
    • Bagheri, A.1    Saraee, M.2    De Jong, F.3
  • 5
    • 85032481568 scopus 로고    scopus 로고
    • Modelling irony in twitter: Feature analysis and evaluation
    • Barbieri F., Saggion H. (2014), Modelling Irony in Twitter: Feature Analysis and Evaluation, Proceedings of LREC, pp. 4258-4264.
    • (2014) Proceedings of LREC , pp. 4258-4264
    • Barbieri, F.1    Saggion, H.2
  • 25
    • 85132893948 scopus 로고    scopus 로고
    • Data Mining and Knowledge Discovery for Big Data, Springer, Berlin, Heidelberg
    • Zhang L., Liu, B. (2014), Aspect and Entity Extraction for Opinion Mining, in Data Mining and Knowledge Discovery for Big Data, Springer, Berlin, Heidelberg, pp. 1-40.
    • (2014) Aspect and Entity Extraction for Opinion Mining , pp. 1-40
    • Zhang, L.1    Liu, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.