메뉴 건너뛰기




Volumn 121, Issue , 2016, Pages 169-179

Early warning in egg production curves from commercial hens: A SVM approach

Author keywords

Drop in egg production; Early warning; Machine learning; Poultry management; Support vector machines

Indexed keywords

AGRICULTURE; ARTIFICIAL INTELLIGENCE; CHARACTER RECOGNITION; FORECASTING; LEARNING ALGORITHMS; LEARNING SYSTEMS; LOSSES; SPEECH RECOGNITION; SUPPORT VECTOR MACHINES;

EID: 84952683856     PISSN: 01681699     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compag.2015.12.009     Document Type: Article
Times cited : (56)

References (46)
  • 1
    • 0001075449 scopus 로고
    • Predicting poultry egg production
    • Adams C.J., Bell D.D. Predicting poultry egg production. Poult. Sci. 1980, 59:937-938. 10.3382/ps.0590937.
    • (1980) Poult. Sci. , vol.59 , pp. 937-938
    • Adams, C.J.1    Bell, D.D.2
  • 2
    • 84856340867 scopus 로고    scopus 로고
    • Egg production forecasting: determining efficient modeling approaches
    • Ahmad H.A. Egg production forecasting: determining efficient modeling approaches. J. Appl. Poult. Res. 2011, 20:463-473. 10.3382/japr.2010-00266.
    • (2011) J. Appl. Poult. Res. , vol.20 , pp. 463-473
    • Ahmad, H.A.1
  • 3
    • 53949083291 scopus 로고    scopus 로고
    • Neural network model for egg production curve
    • doi: javaa.2008.1168.1170
    • Ahmadi H., Golian A. Neural network model for egg production curve. J. Anim. Vet. Adv. 2008, doi: javaa.2008.1168.1170.
    • (2008) J. Anim. Vet. Adv.
    • Ahmadi, H.1    Golian, A.2
  • 4
    • 84908354471 scopus 로고    scopus 로고
    • Improved estimation of bovine weight trajectories using support vector machine classification
    • Alonso J., Villa A., Bahamonde A. Improved estimation of bovine weight trajectories using support vector machine classification. Comput. Electron. Agric. 2015, 110:36-41. 10.1016/j.compag.2014.10.001.
    • (2015) Comput. Electron. Agric. , vol.110 , pp. 36-41
    • Alonso, J.1    Villa, A.2    Bahamonde, A.3
  • 5
    • 84970846412 scopus 로고
    • Statistics notes: diagnostic tests 2: predictive values
    • 102-102
    • Altman D.G., Bland J.M. Statistics notes: diagnostic tests 2: predictive values. BMJ 1994, 309. 102-102. 10.1136/bmj.309.6947.102.
    • (1994) BMJ , vol.309
    • Altman, D.G.1    Bland, J.M.2
  • 10
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., Vapnik V. Support-vector networks. Mach. Learn. 1995, 20:273-297. 10.1007/BF00994018.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 11
    • 77954910407 scopus 로고    scopus 로고
    • Application of statistical process control charts to monitor changes in animal production systems
    • De Vries A., Reneau J.K. Application of statistical process control charts to monitor changes in animal production systems. J. Anim. Sci. 2010, 88:E11-E24. 10.2527/jas.2009-2622.
    • (2010) J. Anim. Sci. , vol.88 , pp. E11-E24
    • De Vries, A.1    Reneau, J.K.2
  • 12
    • 38248998927 scopus 로고
    • Monitoring livestock health and production: service-epidemiology's last frontier?
    • Dohoo I.R. Monitoring livestock health and production: service-epidemiology's last frontier?. Prev. Vet. Med. 1993, 18:43-52. 10.1016/0167-5877(93)90092-8.
    • (1993) Prev. Vet. Med. , vol.18 , pp. 43-52
    • Dohoo, I.R.1
  • 13
    • 84869751787 scopus 로고    scopus 로고
    • Predicting body and carcass characteristics of 2 broiler chicken strains using support vector regression and neural network models
    • Faridi a., Sakomura N.K., Golian A., Marcato S.M. Predicting body and carcass characteristics of 2 broiler chicken strains using support vector regression and neural network models. Poult. Sci. 2012, 91:3286-3294. 10.3382/ps.2012-02491.
    • (2012) Poult. Sci. , vol.91 , pp. 3286-3294
    • Faridi, A.1    Sakomura, N.K.2    Golian, A.3    Marcato, S.M.4
  • 14
    • 84926672752 scopus 로고    scopus 로고
    • Using multiple regression, Bayesian networks and artificial neural networks for prediction of total egg production in European quails based on earlier expressed phenotypes
    • Felipe V.P.S., Silva M.A., Valente B.D., Rosa G.J.M. Using multiple regression, Bayesian networks and artificial neural networks for prediction of total egg production in European quails based on earlier expressed phenotypes. Poult. Sci. 2015, 94:772-780. 10.3382/ps/pev031.
    • (2015) Poult. Sci. , vol.94 , pp. 772-780
    • Felipe, V.P.S.1    Silva, M.A.2    Valente, B.D.3    Rosa, G.J.M.4
  • 16
    • 84893829022 scopus 로고    scopus 로고
    • Hybrid model based on genetic algorithms and SVM applied to variable selection within fruit juice classification
    • Fernandez-Lozano C., Canto C., Gestal M., Andrade-Garda J.M., Rabuñal J.R., Dorado J., Pazos A. Hybrid model based on genetic algorithms and SVM applied to variable selection within fruit juice classification. Sci. World J. 2013, 2013:1-13. 10.1155/2013/982438.
    • (2013) Sci. World J. , vol.2013 , pp. 1-13
    • Fernandez-Lozano, C.1    Canto, C.2    Gestal, M.3    Andrade-Garda, J.M.4    Rabuñal, J.R.5    Dorado, J.6    Pazos, A.7
  • 17
    • 0034567846 scopus 로고    scopus 로고
    • A model for persistency of egg production
    • Grossman M., Gossman T.N., Koops W.J. A model for persistency of egg production. Poult. Sci. 2000, 79:1715-1724. 10.1093/ps/79.12.1715.
    • (2000) Poult. Sci. , vol.79 , pp. 1715-1724
    • Grossman, M.1    Gossman, T.N.2    Koops, W.J.3
  • 18
    • 0035404288 scopus 로고    scopus 로고
    • A model for individual egg production in chickens
    • Grossman M., Koops W.J. A model for individual egg production in chickens. Poult. Sci. 2001, 80:859-867. 10.1093/ps/80.7.859.
    • (2001) Poult. Sci. , vol.80 , pp. 859-867
    • Grossman, M.1    Koops, W.J.2
  • 19
    • 35348956876 scopus 로고    scopus 로고
    • Flood forecasting using support vector machines
    • Han D., Chan L., Zhu N. Flood forecasting using support vector machines. J. Hydroinformatics 2007, 9:267. 10.2166/hydro.2007.027.
    • (2007) J. Hydroinformatics , vol.9 , pp. 267
    • Han, D.1    Chan, L.2    Zhu, N.3
  • 22
    • 84937517416 scopus 로고    scopus 로고
    • Machine learning algorithms for the prediction of conception success to a given insemination in lactating dairy cows
    • Hempstalk K., McParland S., Berry D.P. Machine learning algorithms for the prediction of conception success to a given insemination in lactating dairy cows. J. Dairy Sci. 2015, 98:5262-5273. 10.3168/jds.2014-8984.
    • (2015) J. Dairy Sci. , vol.98 , pp. 5262-5273
    • Hempstalk, K.1    McParland, S.2    Berry, D.P.3
  • 23
    • 84865076648 scopus 로고    scopus 로고
    • Broiler chickens can benefit from machine learning: support vector machine analysis of observational epidemiological data
    • Hepworth P.J., Nefedov a.V., Muchnik I.B., Morgan K.L. Broiler chickens can benefit from machine learning: support vector machine analysis of observational epidemiological data. J. R. Soc. Interf. 2012, 9:1934-1942. 10.1098/rsif.2011.0852.
    • (2012) J. R. Soc. Interf. , vol.9 , pp. 1934-1942
    • Hepworth, P.J.1    Nefedov, A.2    Muchnik, I.B.3    Morgan, K.L.4
  • 24
    • 4944228528 scopus 로고    scopus 로고
    • A practical guide to support vector classification
    • Hsu, C.-W., Chang, C.-C., Chih-Jen, L., 2003. A practical guide to support vector classification, pp. 1-16. doi:10.1177/02632760022050997.
    • (2003) , pp. 1-16
    • Hsu, C.-W.1    Chang, C.-C.2    Chih-Jen, L.3
  • 27
    • 0030212568 scopus 로고    scopus 로고
    • An expert system for monitoring the daily production process in aviary systems for laying hens
    • Lokhorst C., Lamaker E.J.J. An expert system for monitoring the daily production process in aviary systems for laying hens. Comput. Electron. Agric. 1996, 15:215-231. 10.1016/0168-1699(96)00017-8.
    • (1996) Comput. Electron. Agric. , vol.15 , pp. 215-231
    • Lokhorst, C.1    Lamaker, E.J.J.2
  • 31
    • 79956132720 scopus 로고    scopus 로고
    • Statistical control charts as a support tool for the management of livestock production
    • Mertens K., Decuypere E., De Baerdemaeker J., De Ketelaere B. Statistical control charts as a support tool for the management of livestock production. J. Agric. Sci. 2011, 149:369-384. 10.1017/S0021859610001164.
    • (2011) J. Agric. Sci. , vol.149 , pp. 369-384
    • Mertens, K.1    Decuypere, E.2    De Baerdemaeker, J.3    De Ketelaere, B.4
  • 32
    • 84975830551 scopus 로고    scopus 로고
    • Comparing data mining classifiers for grading raisins based on visual features
    • Mollazade K., Omid M., Arefi A. Comparing data mining classifiers for grading raisins based on visual features. Comput. Electron. Agric. 2012, 84:124-131. 10.1016/j.compag.2012.03.004.
    • (2012) Comput. Electron. Agric. , vol.84 , pp. 124-131
    • Mollazade, K.1    Omid, M.2    Arefi, A.3
  • 34
    • 84910017012 scopus 로고    scopus 로고
    • Egg production curve analyses in poultry science
    • Narinc D., Uckardes F., Aslan E. Egg production curve analyses in poultry science. Worlds. Poult. Sci. J. 2014, 70:817-828. 10.1017/S0043933914000877.
    • (2014) Worlds. Poult. Sci. J. , vol.70 , pp. 817-828
    • Narinc, D.1    Uckardes, F.2    Aslan, E.3
  • 36
    • 0026745780 scopus 로고
    • Kalman filter and an example of its use to detect changes in poultry production responses
    • Roush W.B., Tomiyama K., Garnaoui K.H., D'Alfonso T.H., Cravener T.L. Kalman filter and an example of its use to detect changes in poultry production responses. Comput. Electron. Agric. 1992, 6:347-356. 10.1016/0168-1699(92)90005-8.
    • (1992) Comput. Electron. Agric. , vol.6 , pp. 347-356
    • Roush, W.B.1    Tomiyama, K.2    Garnaoui, K.H.3    D'Alfonso, T.H.4    Cravener, T.L.5
  • 37
    • 84868125250 scopus 로고    scopus 로고
    • Egg production curve fitting using nonlinear models for selected and nonselected lines of White Leghorn hens
    • Savegnago R.P., Cruz V.a.R., Ramos S.B., Caetano S.L., Schmidt G.S., Ledur M.C., El Faro L., Munari D.P. Egg production curve fitting using nonlinear models for selected and nonselected lines of White Leghorn hens. Poult. Sci. 2012, 91:2977-2987. 10.3382/ps.2012-02277.
    • (2012) Poult. Sci. , vol.91 , pp. 2977-2987
    • Savegnago, R.P.1    Cruz, V.2    Ramos, S.B.3    Caetano, S.L.4    Schmidt, G.S.5    Ledur, M.C.6    El Faro, L.7    Munari, D.P.8
  • 43
    • 33645762514 scopus 로고    scopus 로고
    • The Use of Control Charts in Surveillance
    • Woodall W.H., Tech V. The Use of Control Charts in Surveillance. J. Qual. Technol. 2006, 38:89-104.
    • (2006) J. Qual. Technol. , vol.38 , pp. 89-104
    • Woodall, W.H.1    Tech, V.2
  • 44
    • 84923165781 scopus 로고    scopus 로고
    • Real-time Adaptive Problem Detection in Poultry
    • Press, I. (Ed.), ECAI 2014
    • Woudenberg, S.P.D., Gaag, L.C., Van Der, Feelders, A., Elbers, A.R.W., 2014. Real-time Adaptive Problem Detection in Poultry. In: Press, I. (Ed.), ECAI 2014, pp. 1217-1218. doi:10.3233/978-1-61499-419-0-1217.
    • (2014) , pp. 1217-1218
    • Woudenberg, S.P.D.1    Gaag, L.C.2    Van Der, F.A.3    Elbers, A.R.W.4
  • 45
    • 77549086672 scopus 로고    scopus 로고
    • Identification of egg's freshness using NIR and support vector data description
    • Zhao J., Lin H., Chen Q., Huang X., Sun Z., Zhou F. Identification of egg's freshness using NIR and support vector data description. J. Food Eng. 2010, 98:408-414. 10.1016/j.jfoodeng.2010.01.018.
    • (2010) J. Food Eng. , vol.98 , pp. 408-414
    • Zhao, J.1    Lin, H.2    Chen, Q.3    Huang, X.4    Sun, Z.5    Zhou, F.6
  • 46
    • 84928950049 scopus 로고    scopus 로고
    • An analytical approach to fast parameter selection of Gaussian RBF Kernel for support vector machine *
    • Zhiliang L., Zuo M., Zhao X., Xu H. An analytical approach to fast parameter selection of Gaussian RBF Kernel for support vector machine *. J. Inf. Sci. Eng. 2015, 710:691-710.
    • (2015) J. Inf. Sci. Eng. , vol.710 , pp. 691-710
    • Zhiliang, L.1    Zuo, M.2    Zhao, X.3    Xu, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.