-
1
-
-
84923238357
-
A migrating ciliary gate compartmentalizes the site of axoneme assembly in Drosophila spermatids
-
Basiri, M.L., A. Ha, A. Chadha, N.M. Clark, A. Polyanovsky, B. Cook, and T. Avidor-Reiss. 2014. A migrating ciliary gate compartmentalizes the site of axoneme assembly in Drosophila spermatids. Curr. Biol. 24:2622-2631. http://dx.doi.org/10.1016/j.cub.2014.09.047
-
(2014)
Curr. Biol
, vol.24
, pp. 2622-2631
-
-
Basiri, M.L.1
Ha, A.2
Chadha, A.3
Clark, N.M.4
Polyanovsky, A.5
Cook, B.6
Avidor-Reiss, T.7
-
2
-
-
84871211229
-
Bld10/Cep135 stabilizes basal bodies to resist cilia-generated forces
-
Bayless, B.A., T.H. Giddings Jr., M. Winey, and C.G. Pearson. 2012. Bld10/Cep135 stabilizes basal bodies to resist cilia-generated forces. Mol. Biol. Cell. 23:4820-4832. http://dx.doi.org/10.1091/mbc.E12-08-0577
-
(2012)
Mol. Biol. Cell
, vol.23
, pp. 4820-4832
-
-
Bayless, B.A.1
Jr.Giddings, T.H.2
Winey, M.3
Pearson, C.G.4
-
3
-
-
0035859888
-
Nephrocystin interacts with Pyk2, p130(Cas), and tensin and triggers phosphorylation of Pyk2
-
USA
-
Benzing, T., P. Gerke, K. Höpker, F. Hildebrandt, E. Kim, and G. Walz. 2001. Nephrocystin interacts with Pyk2, p130(Cas), and tensin and triggers phosphorylation of Pyk2. Proc. Natl. Acad. Sci. USA. 98:9784-9789. http://dx.doi.org/10.1073/pnas.171269898
-
(2001)
Proc. Natl. Acad. Sci
, vol.98
, pp. 9784-9789
-
-
Benzing, T.1
Gerke, P.2
Höpker, K.3
Hildebrandt, F.4
Kim, E.5
Walz, G.6
-
4
-
-
84355161803
-
A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain
-
Chih, B., P. Liu, Y. Chinn, C. Chalouni, L.G. Komuves, P.E. Hass, W. Sandoval, and A.S. Peterson. 2012. A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. Nat. Cell Biol. 14:61-72. http://dx.doi.org/10.1038/ncb2410
-
(2012)
Nat. Cell Biol
, vol.14
, pp. 61-72
-
-
Chih, B.1
Liu, P.2
Chinn, Y.3
Chalouni, C.4
Komuves, L.G.5
Hass, P.E.6
Sandoval, W.7
Peterson, A.S.8
-
5
-
-
0031750484
-
Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons
-
Cole, D.G., D.R. Diener, A.L. Himelblau, P.L. Beech, J.C. Fuster, and J.L. Rosenbaum. 1998. Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J. Cell Biol. 141:993-1008. http://dx.doi.org/10.1083/jcb.141.4.993
-
(1998)
J. Cell Biol
, vol.141
, pp. 993-1008
-
-
Cole, D.G.1
Diener, D.R.2
Himelblau, A.L.3
Beech, P.L.4
Fuster, J.C.5
Rosenbaum, J.L.6
-
6
-
-
77956388187
-
CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content
-
Craige, B., C.C. Tsao, D.R. Diener, Y. Hou, K.F. Lechtreck, J.L. Rosenbaum, and G.B. Witman. 2010. CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. J. Cell Biol. 190:927-940. http://dx.doi.org/10.1083/jcb.201006105
-
(2010)
J. Cell Biol
, vol.190
, pp. 927-940
-
-
Craige, B.1
Tsao, C.C.2
Diener, D.R.3
Hou, Y.4
Lechtreck, K.F.5
Rosenbaum, J.L.6
Witman, G.B.7
-
7
-
-
10644253531
-
Centriole assembly requires both centriolar and pericentriolar material proteins
-
Dammermann, A., T. Müller-Reichert, L. Pelletier, B. Habermann, A. Desai, and K. Oegema. 2004. Centriole assembly requires both centriolar and pericentriolar material proteins. Dev. Cell. 7:815-829. http://dx.doi.org/10.1016/j.devcel.2004.10.015
-
(2004)
Dev. Cell
, vol.7
, pp. 815-829
-
-
Dammermann, A.1
Müller-Reichert, T.2
Pelletier, L.3
Habermann, B.4
Desai, A.5
Oegema, K.6
-
8
-
-
69749090761
-
The hydrolethalus syndrome protein HYLS-1 links core centriole structure to cilia formation
-
Dammermann, A., H. Pemble, B.J. Mitchell, I. Mcleod, J.R. Yates III, C. Kintner, A.B. Desai, and K. Oegema. 2009. The hydrolethalus syndrome protein HYLS-1 links core centriole structure to cilia formation. Genes Dev. 23:2046-2059. http://dx.doi.org/10.1101/gad.1810409
-
(2009)
Genes Dev
, vol.23
, pp. 2046-2059
-
-
Dammermann, A.1
Pemble, H.2
Mitchell, B.J.3
Mcleod, I.4
Yates, J.R.5
Kintner, C.6
Desai, A.B.7
Oegema, K.8
-
9
-
-
70450162111
-
Nephrocystin-1 and nephrocystin-4 are required for epithelial morphogenesis and associate with PALS1/PATJ and Par6
-
Delous, M., N.E. Hellman, H.M. Gaudé, F. Silbermann, A. Le Bivic, R. Salomon, C. Antignac, and S. Saunier. 2009. Nephrocystin-1 and nephrocystin-4 are required for epithelial morphogenesis and associate with PALS1/PATJ and Par6. Hum. Mol. Genet. 18:4711-4723. http://dx.doi.org/10.1093/hmg/ddp434
-
(2009)
Hum. Mol. Genet
, vol.18
, pp. 4711-4723
-
-
Delous, M.1
Hellman, N.E.2
Gaudé, H.M.3
Silbermann, F.4
Le Bivic, A.5
Salomon, R.6
Antignac, C.7
Saunier, S.8
-
10
-
-
84884904381
-
Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination
-
Dickinson, D.J., J.D. Ward, D.J. Reiner, and B. Goldstein. 2013. Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat. Methods. 10:1028-1034. http://dx.doi.org/10.1038/nmeth.2641
-
(2013)
Nat. Methods
, vol.10
, pp. 1028-1034
-
-
Dickinson, D.J.1
Ward, J.D.2
Reiner, D.J.3
Goldstein, B.4
-
11
-
-
4344659154
-
Polarity proteins control ciliogenesis via kinesin motor interactions
-
Fan, S., T.W. Hurd, C.J. Liu, S.W. Straight, T. Weimbs, E.A. Hurd, S.E. Domino, and B. Margolis. 2004. Polarity proteins control ciliogenesis via kinesin motor interactions. Curr. Biol. 14:1451-1461. http://dx.doi.org/10.1016/j.cub.2004.08.025
-
(2004)
Curr. Biol
, vol.14
, pp. 1451-1461
-
-
Fan, S.1
Hurd, T.W.2
Liu, C.J.3
Straight, S.W.4
Weimbs, T.5
Hurd, E.A.6
Domino, S.E.7
Margolis, B.8
-
12
-
-
35448961665
-
When cilia go bad: cilia defects and ciliopathies
-
Fliegauf, M., T. Benzing, and H. Omran. 2007. When cilia go bad: cilia defects and ciliopathies. Nat. Rev. Mol. Cell Biol. 8:880-893. http://dx.doi.org/10.1038/nrm2278
-
(2007)
Nat. Rev. Mol. Cell Biol
, vol.8
, pp. 880-893
-
-
Fliegauf, M.1
Benzing, T.2
Omran, H.3
-
13
-
-
55049117864
-
Single-copy insertion of transgenes in Caenorhabditis elegans
-
Frøkjaer-Jensen, C., M.W. Davis, C.E. Hopkins, B.J. Newman, J.M. Thummel, S.P. Olesen, M. Grunnet, and E.M. Jorgensen. 2008. Single-copy insertion of transgenes in Caenorhabditis elegans. Nat. Genet. 40:1375-1383. http://dx.doi.org/10.1038/ng.248
-
(2008)
Nat. Genet
, vol.40
, pp. 1375-1383
-
-
Frøkjaer-Jensen, C.1
Davis, M.W.2
Hopkins, C.E.3
Newman, B.J.4
Thummel, J.M.5
Olesen, S.P.6
Grunnet, M.7
Jorgensen, E.M.8
-
14
-
-
0032736068
-
A novel WD40 protein, CHE-2, acts cell-autonomously in the formation of C. elegans sensory cilia
-
Fujiwara, M., T. Ishihara, and I. Katsura. 1999. A novel WD40 protein, CHE-2, acts cell-autonomously in the formation of C. elegans sensory cilia. Development. 126:4839-4848.
-
(1999)
Development
, vol.126
, pp. 4839-4848
-
-
Fujiwara, M.1
Ishihara, T.2
Katsura, I.3
-
15
-
-
79960900387
-
A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition
-
Garcia-Gonzalo, F.R., K.C. Corbit, M.S. Sirerol-Piquer, G. Ramaswami, E.A. Otto, T.R. Noriega, A.D. Seol, J.F. Robinson, C.L. Bennett, D.J. Josifova, et al. 2011. A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat. Genet. 43:776-784. http://dx.doi.org/10.1038/ng.891
-
(2011)
Nat. Genet
, vol.43
, pp. 776-784
-
-
Garcia-Gonzalo, F.R.1
Corbit, K.C.2
Sirerol-Piquer, M.S.3
Ramaswami, G.4
Otto, E.A.5
Noriega, T.R.6
Seol, A.D.7
Robinson, J.F.8
Bennett, C.L.9
Josifova, D.J.10
-
16
-
-
64249096085
-
DEX-1 and DYF-7 establish sensory dendrite length by anchoring dendritic tips during cell migration
-
Heiman, M.G., and S. Shaham. 2009. DEX-1 and DYF-7 establish sensory dendrite length by anchoring dendritic tips during cell migration. Cell. 137:344-355. http://dx.doi.org/10.1016/j.cell.2009.01.057
-
(2009)
Cell
, vol.137
, pp. 344-355
-
-
Heiman, M.G.1
Shaham, S.2
-
17
-
-
77951743346
-
Reconstructing the evolutionary history of the centriole from protein components
-
Hodges, M.E., N. Scheumann, B. Wickstead, J.A. Langdale, and K. Gull. 2010. Reconstructing the evolutionary history of the centriole from protein components. J. Cell Sci. 123:1407-1413. http://dx.doi.org/10.1242/jcs.064873
-
(2010)
J. Cell Sci
, vol.123
, pp. 1407-1413
-
-
Hodges, M.E.1
Scheumann, N.2
Wickstead, B.3
Langdale, J.A.4
Gull, K.5
-
18
-
-
83455253776
-
TMEM237 is mutated in individuals with a Joubert syndrome related disorder and expands the role of the TMEM family at the ciliary transition zone
-
Huang, L., K. Szymanska, V.L. Jensen, A.R. Janecke, A.M. Innes, E.E. Davis, P. Frosk, C. Li, J.R. Willer, B.N. Chodirker, et al. 2011. TMEM237 is mutated in individuals with a Joubert syndrome related disorder and expands the role of the TMEM family at the ciliary transition zone. Am. J. Hum. Genet. 89:713-730. http://dx.doi.org/10.1016/j.ajhg.2011.11.005
-
(2011)
Am. J. Hum. Genet
, vol.89
, pp. 713-730
-
-
Huang, L.1
Szymanska, K.2
Jensen, V.L.3
Janecke, A.R.4
Innes, A.M.5
Davis, E.E.6
Frosk, P.7
Li, C.8
Willer, J.R.9
Chodirker, B.N.10
-
19
-
-
77957018371
-
-
March 8, 2007. In WormBook. The C. elegans Research Community, Editors
-
Inglis, P.N., G. Ou, M.R. Leroux, and J.M. Scholey. 2007. The sensory cilia of Caenorhabditis elegans (March 8, 2007). In WormBook. The C. elegans Research Community, Editors. http://dx.doi.org/10.1895/wormbook.1.126.2
-
(2007)
The sensory cilia of Caenorhabditis elegans
-
-
Inglis, P.N.1
Ou, G.2
Leroux, M.R.3
Scholey, J.M.4
-
20
-
-
80053326464
-
LIN-44/Wnt directs dendrite outgrowth through LIN-17/Frizzled in C. elegans neurons
-
Kirszenblat, L., D. Pattabiraman, and M.A. Hilliard. 2011. LIN-44/Wnt directs dendrite outgrowth through LIN-17/Frizzled in C. elegans neurons. PLoS Biol. 9:e1001157. http://dx.doi.org/10.1371/journal.pbio.1001157
-
(2011)
PLoS Biol
, vol.9
-
-
Kirszenblat, L.1
Pattabiraman, D.2
Hilliard, M.A.3
-
21
-
-
0029879295
-
Computer visualization of three-dimensional image data using IMOD
-
Kremer, J.R., D.N. Mastronarde, and J.R. Mcintosh. 1996. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116:71-76. http://dx.doi.org/10.1006/jsbi.1996.0013
-
(1996)
J. Struct. Biol
, vol.116
, pp. 71-76
-
-
Kremer, J.R.1
Mastronarde, D.N.2
Mcintosh, J.R.3
-
22
-
-
84903386058
-
Coiled-coil proteins facilitated the functional expansion of the centrosome
-
Kuhn, M., A.A. Hyman, and A. Beyer. 2014. Coiled-coil proteins facilitated the functional expansion of the centrosome. PLOS Comput. Biol. 10:e1003657. http://dx.doi.org/10.1371/journal.pcbi.1003657
-
(2014)
PLOS Comput. Biol
, vol.10
-
-
Kuhn, M.1
Hyman, A.A.2
Beyer, A.3
-
23
-
-
45849154166
-
An improved general amino acid replacement matrix
-
Le, S.Q., and O. Gascuel. 2008. An improved general amino acid replacement matrix. Mol. Biol. Evol. 25:1307-1320. http://dx.doi.org/10.1093/molbev/msn067
-
(2008)
Mol. Biol. Evol
, vol.25
, pp. 1307-1320
-
-
Le, S.Q.1
Gascuel, O.2
-
24
-
-
25644458666
-
Automated electron microscope tomography using robust prediction of specimen movements
-
Mastronarde, D.N. 2005. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152:36-51. http://dx.doi.org/10.1016/j.jsb.2005.07.007
-
(2005)
J. Struct. Biol
, vol.152
, pp. 36-51
-
-
Mastronarde, D.N.1
-
25
-
-
84876519306
-
Ultrafast approximation for phylogenetic bootstrap
-
Minh, B.Q., M.A. Nguyen, and A. Von Haeseler. 2013. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30:1188-1195. http://dx.doi.org/10.1093/molbev/mst024
-
(2013)
Mol. Biol. Evol
, vol.30
, pp. 1188-1195
-
-
Minh, B.Q.1
Nguyen, M.A.2
Von Haeseler, A.3
-
26
-
-
0035844871
-
Functional analysis of kinetochore assembly in Caenorhabditis elegans
-
Oegema, K., A. Desai, S. Rybina, M. Kirkham, and A.A. Hyman. 2001. Functional analysis of kinetochore assembly in Caenorhabditis elegans. J. Cell Biol. 153:1209-1226. http://dx.doi.org/10.1083/jcb.153.6.1209
-
(2001)
J. Cell Biol
, vol.153
, pp. 1209-1226
-
-
Oegema, K.1
Desai, A.2
Rybina, S.3
Kirkham, M.4
Hyman, A.A.5
-
27
-
-
84885673303
-
Asymmetric inheritance of centrosome-associated primary cilium membrane directs ciliogenesis after cell division
-
Paridaen, J.T., M. Wilsch-Bräuninger, and W.B. Huttner. 2013. Asymmetric inheritance of centrosome-associated primary cilium membrane directs ciliogenesis after cell division. Cell. 155:333-344. http://dx.doi.org/10.1016/j.cell.2013.08.060
-
(2013)
Cell
, vol.155
, pp. 333-344
-
-
Paridaen, J.T.1
Wilsch-Bräuninger, M.2
Huttner, W.B.3
-
28
-
-
0022792740
-
Mutant sensory cilia in the nematode Caenorhabditis elegans
-
Perkins, L.A., E.M. Hedgecock, J.N. Thomson, and J.G. Culotti. 1986. Mutant sensory cilia in the nematode Caenorhabditis elegans. Dev. Biol. 117:456-487. http://dx.doi.org/10.1016/0012-1606(86)90314-3
-
(1986)
Dev. Biol
, vol.117
, pp. 456-487
-
-
Perkins, L.A.1
Hedgecock, E.M.2
Thomson, J.N.3
Culotti, J.G.4
-
29
-
-
84863327175
-
The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization
-
Reiter, J.F., O.E. Blacque, and M.R. Leroux. 2012. The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep. 13:608-618. http://dx.doi.org/10.1038/embor.2012.73
-
(2012)
EMBO Rep
, vol.13
, pp. 608-618
-
-
Reiter, J.F.1
Blacque, O.E.2
Leroux, M.R.3
-
31
-
-
79955808192
-
Mapping the NPHP-JBTSMKS protein network reveals ciliopathy disease genes and pathways
-
Sang, L., J.J. Miller, K.C. Corbit, R.H. Giles, M.J. Brauer, E.A. Otto, L.M. Baye, X. Wen, S.J. Scales, M. Kwong, et al. 2011. Mapping the NPHP-JBTSMKS protein network reveals ciliopathy disease genes and pathways. Cell. 145:513-528.
-
(2011)
Cell
, vol.145
, pp. 513-528
-
-
Sang, L.1
Miller, J.J.2
Corbit, K.C.3
Giles, R.H.4
Brauer, M.J.5
Otto, E.A.6
Baye, L.M.7
Wen, X.8
Scales, S.J.9
Kwong, M.10
-
32
-
-
84871986826
-
Cep164 mediates vesicular docking to the mother centriole during early steps of ciliogenesis
-
Schmidt, K.N., S. Kuhns, A. Neuner, B. Hub, H. Zentgraf, and G. Pereira. 2012. Cep164 mediates vesicular docking to the mother centriole during early steps of ciliogenesis. J. Cell Biol. 199:1083-1101. http://dx.doi.org/10.1083/jcb.201202126
-
(2012)
J. Cell Biol
, vol.199
, pp. 1083-1101
-
-
Schmidt, K.N.1
Kuhns, S.2
Neuner, A.3
Hub, B.4
Zentgraf, H.5
Pereira, G.6
-
33
-
-
37249071974
-
Par3 functions in the biogenesis of the primary cilium in polarized epithelial cells
-
Sfakianos, J., A. Togawa, S. Maday, M. Hull, M. Pypaert, L. Cantley, D. Toomre, and I. Mellman. 2007. Par3 functions in the biogenesis of the primary cilium in polarized epithelial cells. J. Cell Biol. 179:1133-1140. http://dx.doi.org/10.1083/jcb.200709111
-
(2007)
J. Cell Biol
, vol.179
, pp. 1133-1140
-
-
Sfakianos, J.1
Togawa, A.2
Maday, S.3
Hull, M.4
Pypaert, M.5
Cantley, L.6
Toomre, D.7
Mellman, I.8
-
34
-
-
7944222301
-
Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons
-
Snow, J.J., G. Ou, A.L. Gunnarson, M.R. Walker, H.M. Zhou, I. Brust-Mascher, and J.M. Scholey. 2004. Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons. Nat. Cell Biol. 6:1109-1113. http://dx.doi.org/10.1038/ncb1186
-
(2004)
Nat. Cell Biol
, vol.6
, pp. 1109-1113
-
-
Snow, J.J.1
Ou, G.2
Gunnarson, A.L.3
Walker, M.R.4
Zhou, H.M.5
Brust-Mascher, I.6
Scholey, J.M.7
-
35
-
-
0001577217
-
Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells
-
Sorokin, S. 1962. Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J. Cell Biol. 15:363-377. http://dx.doi.org/10.1083/jcb.15.2.363
-
(1962)
J. Cell Biol
, vol.15
, pp. 363-377
-
-
Sorokin, S.1
-
36
-
-
0020858899
-
The embryonic cell lineage of the nematode Caenorhabditis elegans
-
Sulston, J.E., E. Schierenberg, J.G. White, and J.N. Thomson. 1983. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100:64-119. http://dx.doi.org/10.1016/0012-1606(83)90201-4
-
(1983)
Dev. Biol
, vol.100
, pp. 64-119
-
-
Sulston, J.E.1
Schierenberg, E.2
White, J.G.3
Thomson, J.N.4
-
37
-
-
0033713259
-
The RFX-type transcription factor DAF-19 regulates sensory neuron cilium formation in C. elegans
-
Swoboda, P., H.T. Adler, and J.H. Thomas. 2000. The RFX-type transcription factor DAF-19 regulates sensory neuron cilium formation in C. elegans. Mol. Cell. 5:411-421. http://dx.doi.org/10.1016/S1097-2765(00)80436-0
-
(2000)
Mol. Cell
, vol.5
, pp. 411-421
-
-
Swoboda, P.1
Adler, H.T.2
Thomas, J.H.3
-
38
-
-
65549149069
-
Protein architecture of the human kinetochore microtubule attachment site
-
Wan, X., R.P. O'Quinn, H.L. Pierce, A.P. Joglekar, W.E. Gall, J.G. De Luca, C.W. Carroll, S.T. Liu, T.J. Yen, B.F. Mcewen, et al. 2009. Protein architecture of the human kinetochore microtubule attachment site. Cell. 137:672-684. http://dx.doi.org/10.1016/j.cell.2009.03.035
-
(2009)
Cell
, vol.137
, pp. 672-684
-
-
Wan, X.1
O'Quinn, R.P.2
Pierce, H.L.3
Joglekar, A.P.4
Gall, W.E.5
De Luca, J.G.6
Carroll, C.W.7
Liu, S.T.8
Yen, T.J.9
Mcewen, B.F.10
-
39
-
-
48249132000
-
Functional redundancy of the B9 proteins and nephrocystins in Caenorhabditis elegans ciliogenesis
-
Williams, C.L., M.E. Winkelbauer, J.C. Schafer, E.J. Michaud, and B.K. Yoder. 2008. Functional redundancy of the B9 proteins and nephrocystins in Caenorhabditis elegans ciliogenesis. Mol. Biol. Cell. 19:2154-2168. http://dx.doi.org/10.1091/mbc.E07-10-1070
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 2154-2168
-
-
Williams, C.L.1
Winkelbauer, M.E.2
Schafer, J.C.3
Michaud, E.J.4
Yoder, B.K.5
-
40
-
-
79955513961
-
MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis
-
Williams, C.L., C. Li, K. Kida, P.N. Inglis, S. Mohan, L. Semenec, N.J. Bialas, R.M. Stupay, N. Chen, O.E. Blacque, et al. 2011. MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis. J. Cell Biol. 192:1023-1041. http://dx.doi.org/10.1083/jcb.201012116
-
(2011)
J. Cell Biol
, vol.192
, pp. 1023-1041
-
-
Williams, C.L.1
Li, C.2
Kida, K.3
Inglis, P.N.4
Mohan, S.5
Semenec, L.6
Bialas, N.J.7
Stupay, R.M.8
Chen, N.9
Blacque, O.E.10
-
41
-
-
82855167159
-
Basolateral rather than apical primary cilia on neuroepithelial cells committed to delamination
-
Wilsch-Bräuninger, M., J. Peters, J.T. Paridaen, and W.B. Huttner. 2012. Basolateral rather than apical primary cilia on neuroepithelial cells committed to delamination. Development. 139:95-105. http://dx.doi.org/10.1242/dev.069294
-
(2012)
Development
, vol.139
, pp. 95-105
-
-
Wilsch-Bräuninger, M.1
Peters, J.2
Paridaen, J.T.3
Huttner, W.B.4
|