-
1
-
-
0026860706
-
Methods of combining multiple classifiers and their applications to handwriting recognition
-
Xu L., Krzyzak A., Suen C.Y. Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Trans. Syst. Man Cybern. 1992, 22:418-435.
-
(1992)
IEEE Trans. Syst. Man Cybern.
, vol.22
, pp. 418-435
-
-
Xu, L.1
Krzyzak, A.2
Suen, C.Y.3
-
3
-
-
0032021555
-
On combining classifiers
-
Kittler J., Hatef M., Duin R.P.W., Matas J. On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20:226-239.
-
(1998)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.20
, pp. 226-239
-
-
Kittler, J.1
Hatef, M.2
Duin, R.P.W.3
Matas, J.4
-
4
-
-
75149176174
-
Ensemble-based classifiers
-
Rokach L. Ensemble-based classifiers. Artif. Intell. Rev. 2010, 33:1-39.
-
(2010)
Artif. Intell. Rev.
, vol.33
, pp. 1-39
-
-
Rokach, L.1
-
5
-
-
84887090067
-
A survey of multiple classifier systems as hybrid systems
-
Woźniak M., Graña M., Corchado E. A survey of multiple classifier systems as hybrid systems. Inf. Fusion 2014, 16:3-17.
-
(2014)
Inf. Fusion
, vol.16
, pp. 3-17
-
-
Woźniak, M.1
Graña, M.2
Corchado, E.3
-
6
-
-
80053403826
-
Ensemble methods in machine learning
-
Lecture Notes in Computer Science, Springer, Berlin, Heidelberg
-
T.G. Dietterich, Ensemble methods in machine learning, in: Multiple Classifier Systems, in: Lecture Notes in Computer Science, vol. 1857, Springer, Berlin, Heidelberg, 2000, pp. 1-15.
-
(2000)
Multiple Classifier Systems
, vol.1857
, pp. 1-15
-
-
Dietterich, T.G.1
-
8
-
-
79953051509
-
An overview of ensemble methods for binary classifiers in multi-class problems. experimental study on one-vs-one and one-vs-all schemes
-
Galar M., Fernández A., Barrenechea E., Bustince H., Herrera F. An overview of ensemble methods for binary classifiers in multi-class problems. experimental study on one-vs-one and one-vs-all schemes. Pattern Recognit. 2011, 44:1761-1776.
-
(2011)
Pattern Recognit.
, vol.44
, pp. 1761-1776
-
-
Galar, M.1
Fernández, A.2
Barrenechea, E.3
Bustince, H.4
Herrera, F.5
-
9
-
-
0036505670
-
A comparison of methods for multiclass support vector machines
-
Hsu C.-W., Lin C.-J. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 2002, 13:415-425.
-
(2002)
IEEE Trans. Neural Netw.
, vol.13
, pp. 415-425
-
-
Hsu, C.-W.1
Lin, C.-J.2
-
10
-
-
19044382587
-
Round robin classification
-
Fürnkranz J. Round robin classification. J. Mach. Learn. Res. 2002, 2:721-747.
-
(2002)
J. Mach. Learn. Res.
, vol.2
, pp. 721-747
-
-
Fürnkranz, J.1
-
11
-
-
0003250435
-
Single-layer learning revisited: a stepwise procedure for building and training a neural network
-
Springer, Berlin, Heidelberg
-
Knerr S., Personnaz L., Dreyfus G. Single-layer learning revisited: a stepwise procedure for building and training a neural network. Neurocomputing: Algorithms, Architectures and Applications, NATO ASI Series 1990, vol. 68:41-50. Springer, Berlin, Heidelberg. 10.1007/978-3-642-76153-9_5.
-
(1990)
Neurocomputing: Algorithms, Architectures and Applications, NATO ASI Series
, vol.68
, pp. 41-50
-
-
Knerr, S.1
Personnaz, L.2
Dreyfus, G.3
-
12
-
-
56349133338
-
A novel hybrid intelligent method based on C4.5 decision tree classifier and one-against-all approach for multi-class classification problems
-
Polat K., Güneş S. A novel hybrid intelligent method based on C4.5 decision tree classifier and one-against-all approach for multi-class classification problems. Expert Syst. Appl. 2009, 36:1587-1592.
-
(2009)
Expert Syst. Appl.
, vol.36
, pp. 1587-1592
-
-
Polat, K.1
Güneş, S.2
-
13
-
-
84922450521
-
Constructing a multi-class classifier using one-against-one approach with different binary classifiers
-
Kang S., Cho S., Kang P. Constructing a multi-class classifier using one-against-one approach with different binary classifiers. Neurocomputing 2015, 149:677-682.
-
(2015)
Neurocomputing
, vol.149
, pp. 677-682
-
-
Kang, S.1
Cho, S.2
Kang, P.3
-
15
-
-
0033220832
-
Meta analysis of classification algorithms for pattern recognition
-
Sohn S.Y. Meta analysis of classification algorithms for pattern recognition. IEEE Trans. Pattern Anal. Mach. Intell. 1999, 21:1137-1144.
-
(1999)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.21
, pp. 1137-1144
-
-
Sohn, S.Y.1
-
16
-
-
0034274591
-
A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms
-
Lim T.-S., Loh W.-Y., Shih Y.-S. A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Mach. Learn. 2000, 40:203-228.
-
(2000)
Mach. Learn.
, vol.40
, pp. 203-228
-
-
Lim, T.-S.1
Loh, W.-Y.2
Shih, Y.-S.3
-
17
-
-
0038636391
-
A comparative assessment of classification methods
-
Kiang M.Y. A comparative assessment of classification methods. Decis. Support Syst. 2003, 35:441-454.
-
(2003)
Decis. Support Syst.
, vol.35
, pp. 441-454
-
-
Kiang, M.Y.1
-
18
-
-
77956907243
-
On over-fitting in model selection and subsequent selection bias in performance evaluation
-
Cawley G.C., Talbot N.L.C. On over-fitting in model selection and subsequent selection bias in performance evaluation. J. Mach. Learn. Res. 2010, 11:2079-2107.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 2079-2107
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
19
-
-
0035202645
-
An approach to the automatic design of multiple classifier systems
-
Giacinto G., Roli F. An approach to the automatic design of multiple classifier systems. Pattern Recognit. Lett. 2001, 22:25-33.
-
(2001)
Pattern Recognit. Lett.
, vol.22
, pp. 25-33
-
-
Giacinto, G.1
Roli, F.2
-
21
-
-
0026692226
-
Stacked generalization
-
Wolpert D.H. Stacked generalization. Neural Netw. 1992, 5:241-259.
-
(1992)
Neural Netw.
, vol.5
, pp. 241-259
-
-
Wolpert, D.H.1
-
22
-
-
35048859747
-
Combining one-class classifiers to classify missing data
-
F. Roli, J. Kittler, T. Windeatt (Eds.), Springer, Berlin, Heidelberg
-
P. Juszczak, R.P.W. Duin, Combining one-class classifiers to classify missing data, in: F. Roli, J. Kittler, T. Windeatt (Eds.), Multiple Classifier Systems, Lecture Notes in Computer Science, vol. 3077, Springer, Berlin, Heidelberg, 2004, pp. 92-101. doi:10.1007/978-3-540-25966-4_9.
-
(2004)
Multiple Classifier Systems, Lecture Notes in Computer Science
, vol.3077
, pp. 92-101
-
-
Juszczak, P.1
Duin, R.P.W.2
-
24
-
-
44449153509
-
Growing a multi-class classifier with a reject option
-
Tax D.M.J., Duin R.P.W. Growing a multi-class classifier with a reject option. Pattern Recognit. Lett. 2008, 29:1565-1570.
-
(2008)
Pattern Recognit. Lett.
, vol.29
, pp. 1565-1570
-
-
Tax, D.M.J.1
Duin, R.P.W.2
-
25
-
-
84894427964
-
Clustering-based ensembles for one-class classification
-
Krawczyk B., Woźniak M., Cyganek B. Clustering-based ensembles for one-class classification. Inf. Sci. 2014, 264:182-195.
-
(2014)
Inf. Sci.
, vol.264
, pp. 182-195
-
-
Krawczyk, B.1
Woźniak, M.2
Cyganek, B.3
-
26
-
-
84863457581
-
One-class support vector ensembles for image segmentation and classification
-
Cyganek B. One-class support vector ensembles for image segmentation and classification. J. Math. Imaging Vis. 2012, 42:103-117.
-
(2012)
J. Math. Imaging Vis.
, vol.42
, pp. 103-117
-
-
Cyganek, B.1
-
27
-
-
84861734707
-
Clustering based one-class classification for compliance verification of the comprehensive nuclear-test-ban treaty
-
Springer, Berlin, Heidelberg
-
Sharma S., Bellinger C., Japkowicz N. Clustering based one-class classification for compliance verification of the comprehensive nuclear-test-ban treaty. Advances in artificial intelligence, Lecture Notes in Computer Science 2012, vol. 7310:181-193. Springer, Berlin, Heidelberg. 10.1007/978-3-642-30353-1_16.
-
(2012)
Advances in artificial intelligence, Lecture Notes in Computer Science
, vol.7310
, pp. 181-193
-
-
Sharma, S.1
Bellinger, C.2
Japkowicz, N.3
-
28
-
-
0036532571
-
Switching between selection and fusion in combining classifiers. an experiment
-
Kuncheva L.I. Switching between selection and fusion in combining classifiers. an experiment. IEEE Trans. Syst. Man Cybern. Part B-Cybern. 2002, 32:146-156.
-
(2002)
IEEE Trans. Syst. Man Cybern. Part B-Cybern.
, vol.32
, pp. 146-156
-
-
Kuncheva, L.I.1
-
29
-
-
0038133019
-
Limits on the majority vote accuracy in classifier fusion
-
Kuncheva L.I., Whitaker C.J., Shipp C.A., Duin R.P.W. Limits on the majority vote accuracy in classifier fusion. Pattern Anal. Appl. 2003, 6:22-31.
-
(2003)
Pattern Anal. Appl.
, vol.6
, pp. 22-31
-
-
Kuncheva, L.I.1
Whitaker, C.J.2
Shipp, C.A.3
Duin, R.P.W.4
-
31
-
-
0036791948
-
A perspective view and survey of meta-learning
-
Vilalta R., Drissi Y. A perspective view and survey of meta-learning. Artif. Intell. Rev. 2002, 18:77-95.
-
(2002)
Artif. Intell. Rev.
, vol.18
, pp. 77-95
-
-
Vilalta, R.1
Drissi, Y.2
-
32
-
-
12144288329
-
Is combining classifiers with stacking better than selecting the best one?
-
Džeroski S., Ženko B. Is combining classifiers with stacking better than selecting the best one?. Mach. Learn. 2004, 54:255-273.
-
(2004)
Mach. Learn.
, vol.54
, pp. 255-273
-
-
Džeroski, S.1
Ženko, B.2
-
34
-
-
0032661927
-
Using correspondence analysis to combine classifiers
-
Merz C.J. Using correspondence analysis to combine classifiers. Mach. Learn. 1999, 36:33-58.
-
(1999)
Mach. Learn.
, vol.36
, pp. 33-58
-
-
Merz, C.J.1
-
35
-
-
0037365188
-
Combining classifiers with meta decision trees
-
Todorovski L., Džeroski S. Combining classifiers with meta decision trees. Mach. Learn. 2003, 50:223-249.
-
(2003)
Mach. Learn.
, vol.50
, pp. 223-249
-
-
Todorovski, L.1
Džeroski, S.2
-
37
-
-
0142025124
-
Constructing support vector machine ensemble
-
Kim H.-C., Pang S., Je H.-M., Kim D., Bang S.Y. Constructing support vector machine ensemble. Pattern Recognit. 2003, 36:2757-2767.
-
(2003)
Pattern Recognit.
, vol.36
, pp. 2757-2767
-
-
Kim, H.-C.1
Pang, S.2
Je, H.-M.3
Kim, D.4
Bang, S.Y.5
-
38
-
-
35248824715
-
Combining pairwise classifiers with stacking
-
Springer, Berlin, Heidelberg
-
P. Savicky, J. Fürnkranz, Combining pairwise classifiers with stacking, in: Advances in Intelligent Data Analysis, Lecture Notes in Computer Science, vol. 2810, Springer, Berlin, Heidelberg, 2003, pp. 219-229.
-
(2003)
Advances in Intelligent Data Analysis, Lecture Notes in Computer Science
, vol.2810
, pp. 219-229
-
-
Savicky, P.1
Fürnkranz, J.2
-
39
-
-
37549015273
-
Comparing combination rules of pairwise neural networks classifiers
-
Lézoray O., Cardot H. Comparing combination rules of pairwise neural networks classifiers. Neural Process. Lett. 2008, 27:43-56.
-
(2008)
Neural Process. Lett.
, vol.27
, pp. 43-56
-
-
Lézoray, O.1
Cardot, H.2
-
40
-
-
70349750474
-
Troika-an improved stacking schema for classification tasks
-
Menahem E., Rokach L., Elovici Y. Troika-an improved stacking schema for classification tasks. Inf. Sci. 2009, 179:4097-4122.
-
(2009)
Inf. Sci.
, vol.179
, pp. 4097-4122
-
-
Menahem, E.1
Rokach, L.2
Elovici, Y.3
-
41
-
-
84896498038
-
Approximating support vector machine with artificial neural network for fast prediction
-
Kang S., Cho S. Approximating support vector machine with artificial neural network for fast prediction. Expert Syst. Appl. 2014, 41:4989-4995.
-
(2014)
Expert Syst. Appl.
, vol.41
, pp. 4989-4995
-
-
Kang, S.1
Cho, S.2
-
42
-
-
0034499376
-
A note on the utility of incremental learning
-
Giraud-Carrier C. A note on the utility of incremental learning. AI Commun. 2000, 13:215-223.
-
(2000)
AI Commun.
, vol.13
, pp. 215-223
-
-
Giraud-Carrier, C.1
-
45
-
-
37549018049
-
Top 10 algorithms in data mining
-
Wu X., Kumar V., Ross Quinlan J., Ghosh J., Yang Q., Motoda H., McLachlan G.J., Ng A., Liu B., Yu P.S., Zhou Z.-H., Steinbach M., Hand D.J., Steinberg D. Top 10 algorithms in data mining. Knowl. Inform. Syst. 2008, 14:1-37.
-
(2008)
Knowl. Inform. Syst.
, vol.14
, pp. 1-37
-
-
Wu, X.1
Kumar, V.2
Ross Quinlan, J.3
Ghosh, J.4
Yang, Q.5
Motoda, H.6
McLachlan, G.J.7
Ng, A.8
Liu, B.9
Yu, P.S.10
Zhou, Z.-H.11
Steinbach, M.12
Hand, D.J.13
Steinberg, D.14
-
46
-
-
0003684449
-
-
Springer, New York
-
Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction 2009, Springer, New York. second ed.
-
(2009)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
47
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Demšar J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7:1-30.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1-30
-
-
Demšar, J.1
-
48
-
-
58149287952
-
An extension on "statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons
-
García S., Herrera F. An extension on "statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons. J. Mach. Learn. Res. 2008, 9:2677-2694.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 2677-2694
-
-
García, S.1
Herrera, F.2
-
49
-
-
64549120231
-
A study of statistical techniques and performance measures for genetics-based machine learning. accuracy and interpretability
-
García S., Fernández A., Luengo J., Herrera F. A study of statistical techniques and performance measures for genetics-based machine learning. accuracy and interpretability. Soft Comput. 2009, 13:959-977.
-
(2009)
Soft Comput.
, vol.13
, pp. 959-977
-
-
García, S.1
Fernández, A.2
Luengo, J.3
Herrera, F.4
-
50
-
-
77549084648
-
Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining. experimental analysis of power
-
García S., Fernández A., Luengo J., Herrera F. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining. experimental analysis of power. Inf. Sci. 2010, 180:2044-2064.
-
(2010)
Inf. Sci.
, vol.180
, pp. 2044-2064
-
-
García, S.1
Fernández, A.2
Luengo, J.3
Herrera, F.4
|