메뉴 건너뛰기




Volumn 167, Issue , 2015, Pages 459-466

Optimal construction of one-against-one classifier based on meta-learning

Author keywords

Diversified one against one; Meta learning; Multi class classification; Multiple classifier system; One against one; Optimally diversified one against one

Indexed keywords

CLASSIFIERS; LEARNING SYSTEMS;

EID: 84952631941     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2015.04.048     Document Type: Article
Times cited : (11)

References (50)
  • 1
    • 0026860706 scopus 로고
    • Methods of combining multiple classifiers and their applications to handwriting recognition
    • Xu L., Krzyzak A., Suen C.Y. Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Trans. Syst. Man Cybern. 1992, 22:418-435.
    • (1992) IEEE Trans. Syst. Man Cybern. , vol.22 , pp. 418-435
    • Xu, L.1    Krzyzak, A.2    Suen, C.Y.3
  • 4
    • 75149176174 scopus 로고    scopus 로고
    • Ensemble-based classifiers
    • Rokach L. Ensemble-based classifiers. Artif. Intell. Rev. 2010, 33:1-39.
    • (2010) Artif. Intell. Rev. , vol.33 , pp. 1-39
    • Rokach, L.1
  • 5
    • 84887090067 scopus 로고    scopus 로고
    • A survey of multiple classifier systems as hybrid systems
    • Woźniak M., Graña M., Corchado E. A survey of multiple classifier systems as hybrid systems. Inf. Fusion 2014, 16:3-17.
    • (2014) Inf. Fusion , vol.16 , pp. 3-17
    • Woźniak, M.1    Graña, M.2    Corchado, E.3
  • 6
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • Lecture Notes in Computer Science, Springer, Berlin, Heidelberg
    • T.G. Dietterich, Ensemble methods in machine learning, in: Multiple Classifier Systems, in: Lecture Notes in Computer Science, vol. 1857, Springer, Berlin, Heidelberg, 2000, pp. 1-15.
    • (2000) Multiple Classifier Systems , vol.1857 , pp. 1-15
    • Dietterich, T.G.1
  • 7
    • 72449154589 scopus 로고    scopus 로고
    • A review on the combination of binary classifiers in multiclass problems
    • Lorena A.C., de Carvalho A.C.P.L.F., Gama J.M.P. A review on the combination of binary classifiers in multiclass problems. Artif. Intell. Rev. 2008, 30:19-37.
    • (2008) Artif. Intell. Rev. , vol.30 , pp. 19-37
    • Lorena, A.C.1    de Carvalho, A.C.P.L.F.2    Gama, J.M.P.3
  • 8
    • 79953051509 scopus 로고    scopus 로고
    • An overview of ensemble methods for binary classifiers in multi-class problems. experimental study on one-vs-one and one-vs-all schemes
    • Galar M., Fernández A., Barrenechea E., Bustince H., Herrera F. An overview of ensemble methods for binary classifiers in multi-class problems. experimental study on one-vs-one and one-vs-all schemes. Pattern Recognit. 2011, 44:1761-1776.
    • (2011) Pattern Recognit. , vol.44 , pp. 1761-1776
    • Galar, M.1    Fernández, A.2    Barrenechea, E.3    Bustince, H.4    Herrera, F.5
  • 9
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Hsu C.-W., Lin C.-J. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 2002, 13:415-425.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 10
    • 19044382587 scopus 로고    scopus 로고
    • Round robin classification
    • Fürnkranz J. Round robin classification. J. Mach. Learn. Res. 2002, 2:721-747.
    • (2002) J. Mach. Learn. Res. , vol.2 , pp. 721-747
    • Fürnkranz, J.1
  • 11
    • 0003250435 scopus 로고
    • Single-layer learning revisited: a stepwise procedure for building and training a neural network
    • Springer, Berlin, Heidelberg
    • Knerr S., Personnaz L., Dreyfus G. Single-layer learning revisited: a stepwise procedure for building and training a neural network. Neurocomputing: Algorithms, Architectures and Applications, NATO ASI Series 1990, vol. 68:41-50. Springer, Berlin, Heidelberg. 10.1007/978-3-642-76153-9_5.
    • (1990) Neurocomputing: Algorithms, Architectures and Applications, NATO ASI Series , vol.68 , pp. 41-50
    • Knerr, S.1    Personnaz, L.2    Dreyfus, G.3
  • 12
    • 56349133338 scopus 로고    scopus 로고
    • A novel hybrid intelligent method based on C4.5 decision tree classifier and one-against-all approach for multi-class classification problems
    • Polat K., Güneş S. A novel hybrid intelligent method based on C4.5 decision tree classifier and one-against-all approach for multi-class classification problems. Expert Syst. Appl. 2009, 36:1587-1592.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 1587-1592
    • Polat, K.1    Güneş, S.2
  • 13
    • 84922450521 scopus 로고    scopus 로고
    • Constructing a multi-class classifier using one-against-one approach with different binary classifiers
    • Kang S., Cho S., Kang P. Constructing a multi-class classifier using one-against-one approach with different binary classifiers. Neurocomputing 2015, 149:677-682.
    • (2015) Neurocomputing , vol.149 , pp. 677-682
    • Kang, S.1    Cho, S.2    Kang, P.3
  • 15
    • 0033220832 scopus 로고    scopus 로고
    • Meta analysis of classification algorithms for pattern recognition
    • Sohn S.Y. Meta analysis of classification algorithms for pattern recognition. IEEE Trans. Pattern Anal. Mach. Intell. 1999, 21:1137-1144.
    • (1999) IEEE Trans. Pattern Anal. Mach. Intell. , vol.21 , pp. 1137-1144
    • Sohn, S.Y.1
  • 16
    • 0034274591 scopus 로고    scopus 로고
    • A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms
    • Lim T.-S., Loh W.-Y., Shih Y.-S. A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Mach. Learn. 2000, 40:203-228.
    • (2000) Mach. Learn. , vol.40 , pp. 203-228
    • Lim, T.-S.1    Loh, W.-Y.2    Shih, Y.-S.3
  • 17
    • 0038636391 scopus 로고    scopus 로고
    • A comparative assessment of classification methods
    • Kiang M.Y. A comparative assessment of classification methods. Decis. Support Syst. 2003, 35:441-454.
    • (2003) Decis. Support Syst. , vol.35 , pp. 441-454
    • Kiang, M.Y.1
  • 18
    • 77956907243 scopus 로고    scopus 로고
    • On over-fitting in model selection and subsequent selection bias in performance evaluation
    • Cawley G.C., Talbot N.L.C. On over-fitting in model selection and subsequent selection bias in performance evaluation. J. Mach. Learn. Res. 2010, 11:2079-2107.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 2079-2107
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 19
    • 0035202645 scopus 로고    scopus 로고
    • An approach to the automatic design of multiple classifier systems
    • Giacinto G., Roli F. An approach to the automatic design of multiple classifier systems. Pattern Recognit. Lett. 2001, 22:25-33.
    • (2001) Pattern Recognit. Lett. , vol.22 , pp. 25-33
    • Giacinto, G.1    Roli, F.2
  • 21
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert D.H. Stacked generalization. Neural Netw. 1992, 5:241-259.
    • (1992) Neural Netw. , vol.5 , pp. 241-259
    • Wolpert, D.H.1
  • 22
    • 35048859747 scopus 로고    scopus 로고
    • Combining one-class classifiers to classify missing data
    • F. Roli, J. Kittler, T. Windeatt (Eds.), Springer, Berlin, Heidelberg
    • P. Juszczak, R.P.W. Duin, Combining one-class classifiers to classify missing data, in: F. Roli, J. Kittler, T. Windeatt (Eds.), Multiple Classifier Systems, Lecture Notes in Computer Science, vol. 3077, Springer, Berlin, Heidelberg, 2004, pp. 92-101. doi:10.1007/978-3-540-25966-4_9.
    • (2004) Multiple Classifier Systems, Lecture Notes in Computer Science , vol.3077 , pp. 92-101
    • Juszczak, P.1    Duin, R.P.W.2
  • 24
    • 44449153509 scopus 로고    scopus 로고
    • Growing a multi-class classifier with a reject option
    • Tax D.M.J., Duin R.P.W. Growing a multi-class classifier with a reject option. Pattern Recognit. Lett. 2008, 29:1565-1570.
    • (2008) Pattern Recognit. Lett. , vol.29 , pp. 1565-1570
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 25
    • 84894427964 scopus 로고    scopus 로고
    • Clustering-based ensembles for one-class classification
    • Krawczyk B., Woźniak M., Cyganek B. Clustering-based ensembles for one-class classification. Inf. Sci. 2014, 264:182-195.
    • (2014) Inf. Sci. , vol.264 , pp. 182-195
    • Krawczyk, B.1    Woźniak, M.2    Cyganek, B.3
  • 26
    • 84863457581 scopus 로고    scopus 로고
    • One-class support vector ensembles for image segmentation and classification
    • Cyganek B. One-class support vector ensembles for image segmentation and classification. J. Math. Imaging Vis. 2012, 42:103-117.
    • (2012) J. Math. Imaging Vis. , vol.42 , pp. 103-117
    • Cyganek, B.1
  • 27
    • 84861734707 scopus 로고    scopus 로고
    • Clustering based one-class classification for compliance verification of the comprehensive nuclear-test-ban treaty
    • Springer, Berlin, Heidelberg
    • Sharma S., Bellinger C., Japkowicz N. Clustering based one-class classification for compliance verification of the comprehensive nuclear-test-ban treaty. Advances in artificial intelligence, Lecture Notes in Computer Science 2012, vol. 7310:181-193. Springer, Berlin, Heidelberg. 10.1007/978-3-642-30353-1_16.
    • (2012) Advances in artificial intelligence, Lecture Notes in Computer Science , vol.7310 , pp. 181-193
    • Sharma, S.1    Bellinger, C.2    Japkowicz, N.3
  • 28
    • 0036532571 scopus 로고    scopus 로고
    • Switching between selection and fusion in combining classifiers. an experiment
    • Kuncheva L.I. Switching between selection and fusion in combining classifiers. an experiment. IEEE Trans. Syst. Man Cybern. Part B-Cybern. 2002, 32:146-156.
    • (2002) IEEE Trans. Syst. Man Cybern. Part B-Cybern. , vol.32 , pp. 146-156
    • Kuncheva, L.I.1
  • 31
    • 0036791948 scopus 로고    scopus 로고
    • A perspective view and survey of meta-learning
    • Vilalta R., Drissi Y. A perspective view and survey of meta-learning. Artif. Intell. Rev. 2002, 18:77-95.
    • (2002) Artif. Intell. Rev. , vol.18 , pp. 77-95
    • Vilalta, R.1    Drissi, Y.2
  • 32
    • 12144288329 scopus 로고    scopus 로고
    • Is combining classifiers with stacking better than selecting the best one?
    • Džeroski S., Ženko B. Is combining classifiers with stacking better than selecting the best one?. Mach. Learn. 2004, 54:255-273.
    • (2004) Mach. Learn. , vol.54 , pp. 255-273
    • Džeroski, S.1    Ženko, B.2
  • 34
    • 0032661927 scopus 로고    scopus 로고
    • Using correspondence analysis to combine classifiers
    • Merz C.J. Using correspondence analysis to combine classifiers. Mach. Learn. 1999, 36:33-58.
    • (1999) Mach. Learn. , vol.36 , pp. 33-58
    • Merz, C.J.1
  • 35
    • 0037365188 scopus 로고    scopus 로고
    • Combining classifiers with meta decision trees
    • Todorovski L., Džeroski S. Combining classifiers with meta decision trees. Mach. Learn. 2003, 50:223-249.
    • (2003) Mach. Learn. , vol.50 , pp. 223-249
    • Todorovski, L.1    Džeroski, S.2
  • 39
    • 37549015273 scopus 로고    scopus 로고
    • Comparing combination rules of pairwise neural networks classifiers
    • Lézoray O., Cardot H. Comparing combination rules of pairwise neural networks classifiers. Neural Process. Lett. 2008, 27:43-56.
    • (2008) Neural Process. Lett. , vol.27 , pp. 43-56
    • Lézoray, O.1    Cardot, H.2
  • 40
    • 70349750474 scopus 로고    scopus 로고
    • Troika-an improved stacking schema for classification tasks
    • Menahem E., Rokach L., Elovici Y. Troika-an improved stacking schema for classification tasks. Inf. Sci. 2009, 179:4097-4122.
    • (2009) Inf. Sci. , vol.179 , pp. 4097-4122
    • Menahem, E.1    Rokach, L.2    Elovici, Y.3
  • 41
    • 84896498038 scopus 로고    scopus 로고
    • Approximating support vector machine with artificial neural network for fast prediction
    • Kang S., Cho S. Approximating support vector machine with artificial neural network for fast prediction. Expert Syst. Appl. 2014, 41:4989-4995.
    • (2014) Expert Syst. Appl. , vol.41 , pp. 4989-4995
    • Kang, S.1    Cho, S.2
  • 42
    • 0034499376 scopus 로고    scopus 로고
    • A note on the utility of incremental learning
    • Giraud-Carrier C. A note on the utility of incremental learning. AI Commun. 2000, 13:215-223.
    • (2000) AI Commun. , vol.13 , pp. 215-223
    • Giraud-Carrier, C.1
  • 47
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7:1-30.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demšar, J.1
  • 48
    • 58149287952 scopus 로고    scopus 로고
    • An extension on "statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons
    • García S., Herrera F. An extension on "statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons. J. Mach. Learn. Res. 2008, 9:2677-2694.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 2677-2694
    • García, S.1    Herrera, F.2
  • 49
    • 64549120231 scopus 로고    scopus 로고
    • A study of statistical techniques and performance measures for genetics-based machine learning. accuracy and interpretability
    • García S., Fernández A., Luengo J., Herrera F. A study of statistical techniques and performance measures for genetics-based machine learning. accuracy and interpretability. Soft Comput. 2009, 13:959-977.
    • (2009) Soft Comput. , vol.13 , pp. 959-977
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 50
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining. experimental analysis of power
    • García S., Fernández A., Luengo J., Herrera F. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining. experimental analysis of power. Inf. Sci. 2010, 180:2044-2064.
    • (2010) Inf. Sci. , vol.180 , pp. 2044-2064
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.