메뉴 건너뛰기




Volumn 113, Issue , 2016, Pages 411-425

Investigation of novel integrated air separation processes, cold energy recovery of liquefied natural gas and carbon dioxide power cycle

Author keywords

Carbon dioxide; Cold recovery; Cryogenic air separation; Exergy; LNG regasification; Power generation

Indexed keywords

CARBON DIOXIDE; CARBON DIOXIDE PROCESS; CRYOGENIC ENERGY STORAGE; CRYOGENICS; ENERGY CONSERVATION; ENERGY UTILIZATION; EXERGY; GAS FUEL PURIFICATION; LIQUEFIED NATURAL GAS; NATURAL GAS; NITROGEN; OXYGEN; POWER GENERATION; TEMPERATURE;

EID: 84952334110     PISSN: 09596526     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jclepro.2015.12.058     Document Type: Article
Times cited : (87)

References (42)
  • 1
    • 67651100734 scopus 로고    scopus 로고
    • Carbon dioxide power cycles using liquid natural gas as heat sink
    • G. Angelino, and C.M. Invernizzi Carbon dioxide power cycles using liquid natural gas as heat sink Appl. Therm. Eng. 29 14-15 2009 2935 2941
    • (2009) Appl. Therm. Eng. , vol.29 , Issue.14-15 , pp. 2935-2941
    • Angelino, G.1    Invernizzi, C.M.2
  • 2
    • 0038823965 scopus 로고    scopus 로고
    • Simulation of multistream plate-fin heat exchangers of an air separation unit
    • R. Boehme, J.A.R. Parise, and R. Pitanga Marques Simulation of multistream plate-fin heat exchangers of an air separation unit Cryogenics 43 6 2003 325 334
    • (2003) Cryogenics , vol.43 , Issue.6 , pp. 325-334
    • Boehme, R.1    Parise, J.A.R.2    Pitanga Marques, R.3
  • 3
    • 33745233798 scopus 로고    scopus 로고
    • A comparative study of the carbon dioxide transcritical power cycle compared with an organic rankine cycle with R123 as working fluid in waste heat recovery
    • Y. Chen, P. Lundqvist, A. Johansson, and P. Platell A comparative study of the carbon dioxide transcritical power cycle compared with an organic rankine cycle with R123 as working fluid in waste heat recovery Appl. Therm. Eng. 26 17-18 2006 2142 2147
    • (2006) Appl. Therm. Eng. , vol.26 , Issue.17-18 , pp. 2142-2147
    • Chen, Y.1    Lundqvist, P.2    Johansson, A.3    Platell, P.4
  • 5
    • 55549115987 scopus 로고    scopus 로고
    • Exergy recovery during LNG regasification: Electric energy production - part one
    • C. Dispenza, G. Dispenza, V. La Rocca, and G. Panno Exergy recovery during LNG regasification: Electric energy production - part one Appl. Therm. Eng. 29 2-3 2009 380 387
    • (2009) Appl. Therm. Eng. , vol.29 , Issue.2-3 , pp. 380-387
    • Dispenza, C.1    Dispenza, G.2    La Rocca, V.3    Panno, G.4
  • 6
    • 84888432809 scopus 로고    scopus 로고
    • Using cryogenic exergy of liquefied natural gas for electricity production with the Stirling cycle
    • H. Dong, L. Zhao, S. Zhang, A. Wang, and J. Cai Using cryogenic exergy of liquefied natural gas for electricity production with the Stirling cycle Energy 63 0 2013 10 18
    • (2013) Energy , vol.63 , pp. 10-18
    • Dong, H.1    Zhao, L.2    Zhang, S.3    Wang, A.4    Cai, J.5
  • 7
    • 84883279670 scopus 로고    scopus 로고
    • Recuperative vapor recompression heat pumps in cryogenic air separation processes
    • C. Fu, and T. Gundersen Recuperative vapor recompression heat pumps in cryogenic air separation processes Energy 59 0 2013 708 718
    • (2013) Energy , vol.59 , pp. 708-718
    • Fu, C.1    Gundersen, T.2
  • 8
    • 84860269175 scopus 로고    scopus 로고
    • Simulation and optimization of refrigeration cycle in NGL recovery plants with exergy-pinch analysis
    • B. Ghorbani, G.R. Salehi, H. Ghaemmaleki, M. Amidpour, and M.H. Hamedi Simulation and optimization of refrigeration cycle in NGL recovery plants with exergy-pinch analysis J. Nat. Gas Sci. Eng. 7 2012 35 43
    • (2012) J. Nat. Gas Sci. Eng. , vol.7 , pp. 35-43
    • Ghorbani, B.1    Salehi, G.R.2    Ghaemmaleki, H.3    Amidpour, M.4    Hamedi, M.H.5
  • 11
    • 79951640913 scopus 로고    scopus 로고
    • A novel cryogenic air separation process based on self-heat recuperation
    • Y. Kansha, A. Kishimoto, T. Nakagawa, and A. Tsutsumi A novel cryogenic air separation process based on self-heat recuperation Sep. Purif. Technol. 77 3 2011 389 396
    • (2011) Sep. Purif. Technol. , vol.77 , Issue.3 , pp. 389-396
    • Kansha, Y.1    Kishimoto, A.2    Nakagawa, T.3    Tsutsumi, A.4
  • 12
    • 0034274649 scopus 로고    scopus 로고
    • Power augmentation of combined cycle power plants using cold energy of liquefied natural gas
    • T.S. Kim, and S.T. Ro Power augmentation of combined cycle power plants using cold energy of liquefied natural gas Energy 25 9 2000 841 856
    • (2000) Energy , vol.25 , Issue.9 , pp. 841-856
    • Kim, T.S.1    Ro, S.T.2
  • 15
    • 77950341532 scopus 로고    scopus 로고
    • Cold recovery during regasification of LNG part one: Cold utilization far from the regasification facility
    • V. La Rocca Cold recovery during regasification of LNG part one: Cold utilization far from the regasification facility Energy 35 5 2010 2049 2058
    • (2010) Energy , vol.35 , Issue.5 , pp. 2049-2058
    • La Rocca, V.1
  • 16
    • 79961024410 scopus 로고    scopus 로고
    • Cold recovery during regasification of LNG part two: Applications in an Agro Food Industry and a Hypermarket
    • V. La Rocca Cold recovery during regasification of LNG part two: Applications in an Agro Food Industry and a Hypermarket Energy 36 8 2011 4897 4908
    • (2011) Energy , vol.36 , Issue.8 , pp. 4897-4908
    • La Rocca, V.1
  • 18
    • 84888024700 scopus 로고    scopus 로고
    • A solar energy storage and power generation system based on supercritical carbon dioxide
    • J. Liu, H. Chen, Y. Xu, L. Wang, and C. Tan A solar energy storage and power generation system based on supercritical carbon dioxide Renew. Energy 64 0 2014 43 51
    • (2014) Renew. Energy , vol.64 , pp. 43-51
    • Liu, J.1    Chen, H.2    Xu, Y.3    Wang, L.4    Tan, C.5
  • 21
    • 33845502922 scopus 로고    scopus 로고
    • Simulation and exergy-method analysis of an industrial refrigeration cycle used in NGL recovery units
    • M. Mehrpooya, A. Jarrahian, and M.R. Pishvaie Simulation and exergy-method analysis of an industrial refrigeration cycle used in NGL recovery units Int. J. Energy Res. 30 15 2006 1336 1351
    • (2006) Int. J. Energy Res. , vol.30 , Issue.15 , pp. 1336-1351
    • Mehrpooya, M.1    Jarrahian, A.2    Pishvaie, M.R.3
  • 22
    • 77951130386 scopus 로고    scopus 로고
    • Introducing a novel integrated NGL recovery process configuration (with a self-refrigeration system (open-closed cycle)) with minimum energy requirement
    • M. Mehrpooya, A. Vatani, and S.M. Ali Mousavian Introducing a novel integrated NGL recovery process configuration (with a self-refrigeration system (open-closed cycle)) with minimum energy requirement Chem. Eng. Process. Process Intensif. 49 4 2010 376 388
    • (2010) Chem. Eng. Process. Process Intensif. , vol.49 , Issue.4 , pp. 376-388
    • Mehrpooya, M.1    Vatani, A.2    Ali Mousavian, S.M.3
  • 23
    • 80052319022 scopus 로고    scopus 로고
    • Introducing a new parameter for evaluating the degree of integration in cryogenic liquid recovery processes
    • M. Mehrpooya, A. Vatani, and S.M.A. Moosavian Introducing a new parameter for evaluating the degree of integration in cryogenic liquid recovery processes Chem. Eng. Process. Process Intensif. 50 9 2011 916 930
    • (2011) Chem. Eng. Process. Process Intensif. , vol.50 , Issue.9 , pp. 916-930
    • Mehrpooya, M.1    Vatani, A.2    Moosavian, S.M.A.3
  • 24
    • 84954384925 scopus 로고    scopus 로고
    • Optimum design and exergy analysis of a novel cryogenic air separation process with LNG (liquefied natural gas) cold energy utilization
    • M. Mehrpooya, M.M. Moftakhari Sharifzadeh, and M.A. Rosen Optimum design and exergy analysis of a novel cryogenic air separation process with LNG (liquefied natural gas) cold energy utilization Energy 2015
    • (2015) Energy
    • Mehrpooya, M.1    Moftakhari Sharifzadeh, M.M.2    Rosen, M.A.3
  • 25
    • 79958171013 scopus 로고    scopus 로고
    • Comparative evaluation of LNG - based cogeneration systems using advanced exergetic analysis
    • T. Morosuk, and G. Tsatsaronis Comparative evaluation of LNG - based cogeneration systems using advanced exergetic analysis Energy 36 6 2011 3771 3778
    • (2011) Energy , vol.36 , Issue.6 , pp. 3771-3778
    • Morosuk, T.1    Tsatsaronis, G.2
  • 26
    • 0001066880 scopus 로고    scopus 로고
    • Evaluation of an energy supply system with air separation
    • M. Nakaiwa, T. Akiya, M. Owa, and Y. Tanaka Evaluation of an energy supply system with air separation Energy Convers. Manag. 37 3 1996 295 301
    • (1996) Energy Convers. Manag. , vol.37 , Issue.3 , pp. 295-301
    • Nakaiwa, M.1    Akiya, T.2    Owa, M.3    Tanaka, Y.4
  • 30
    • 0035324518 scopus 로고    scopus 로고
    • A review of air separation technologies and their integration with energy conversion processes
    • A.R. Smith, and J. Klosek A review of air separation technologies and their integration with energy conversion processes Fuel Process. Technol. 70 2 2001 115 134
    • (2001) Fuel Process. Technol. , vol.70 , Issue.2 , pp. 115-134
    • Smith, A.R.1    Klosek, J.2
  • 31
    • 82155187224 scopus 로고    scopus 로고
    • 2 power cycle driven by solar energy with liquified natural gas as its heat sink
    • 2 power cycle driven by solar energy with liquified natural gas as its heat sink Appl. Energy 92 0 2012 194 203
    • (2012) Appl. Energy , vol.92 , pp. 194-203
    • Song, Y.1    Wang, J.2    Dai, Y.3    Zhou, E.4
  • 32
    • 76449083082 scopus 로고    scopus 로고
    • Advanced exergetic analysis of a novel system for generating electricity and vaporizing liquefied natural gas
    • G. Tsatsaronis, and T. Morosuk Advanced exergetic analysis of a novel system for generating electricity and vaporizing liquefied natural gas Energy 35 2 2010 820 829
    • (2010) Energy , vol.35 , Issue.2 , pp. 820-829
    • Tsatsaronis, G.1    Morosuk, T.2
  • 33
    • 84859792506 scopus 로고    scopus 로고
    • Improving the exergy efficiency of a cryogenic air separation unit as part of an integrated gasification combined cycle
    • L.V. van der Ham Improving the exergy efficiency of a cryogenic air separation unit as part of an integrated gasification combined cycle Energy Convers. Manag. 61 0 2012 31 42
    • (2012) Energy Convers. Manag. , vol.61 , pp. 31-42
    • Van Der Ham, L.V.1
  • 34
    • 78649825918 scopus 로고    scopus 로고
    • Exergy analysis of two cryogenic air separation processes
    • L.V. van der Ham, and S. Kjelstrup Exergy analysis of two cryogenic air separation processes Energy 35 12 2010 4731 4739
    • (2010) Energy , vol.35 , Issue.12 , pp. 4731-4739
    • Van Der Ham, L.V.1    Kjelstrup, S.2
  • 35
    • 84871406723 scopus 로고    scopus 로고
    • A novel process configuration for co-production of NGL and LNG with low energy requirement
    • A. Vatani, M. Mehrpooy, and B. Tirandazi A novel process configuration for co-production of NGL and LNG with low energy requirement Chem. Eng. Process. Process Intensif. 63 2013 16 24
    • (2013) Chem. Eng. Process. Process Intensif. , vol.63 , pp. 16-24
    • Vatani, A.1    Mehrpooy, M.2    Tirandazi, B.3
  • 36
    • 84907890178 scopus 로고    scopus 로고
    • Energy and exergy analyses of five conventional liquefied natural gas processes
    • A. Vatani, M. Mehrpooya, and A. Palizdar Energy and exergy analyses of five conventional liquefied natural gas processes Int. J. Energy Res. 38 14 2014 1843 1863
    • (2014) Int. J. Energy Res. , vol.38 , Issue.14 , pp. 1843-1863
    • Vatani, A.1    Mehrpooya, M.2    Palizdar, A.3
  • 37
    • 84891453858 scopus 로고    scopus 로고
    • Advanced exergetic analysis of five natural gas liquefaction processes
    • A. Vatani, M. Mehrpooya, and A. Palizdar Advanced exergetic analysis of five natural gas liquefaction processes Energy Convers. Manag. 78 0 2014 720 737
    • (2014) Energy Convers. Manag. , vol.78 , pp. 720-737
    • Vatani, A.1    Mehrpooya, M.2    Palizdar, A.3
  • 38
    • 84862766489 scopus 로고    scopus 로고
    • A conceptual demonstration of freeze desalination-membrane distillation (FD-MD) hybrid desalination process utilizing liquefied natural gas (LNG) cold energy
    • P. Wang, and T.-S. Chung A conceptual demonstration of freeze desalination-membrane distillation (FD-MD) hybrid desalination process utilizing liquefied natural gas (LNG) cold energy Water Res. 46 13 2012 4037 4052
    • (2012) Water Res. , vol.46 , Issue.13 , pp. 4037-4052
    • Wang, P.1    Chung, T.-S.2
  • 40
    • 84896397031 scopus 로고    scopus 로고
    • 2 (carbon dioxide) power cycle for reverse osmosis desalination based on the recovery of cryogenic energy of LNG (liquefied natural gas)
    • 2 (carbon dioxide) power cycle for reverse osmosis desalination based on the recovery of cryogenic energy of LNG (liquefied natural gas) Energy 66 0 2014 643 653
    • (2014) Energy , vol.66 , pp. 643-653
    • Xia, G.1    Sun, Q.2    Cao, X.3    Wang, J.4    Yu, Y.5    Wang, L.6
  • 41
    • 84893908540 scopus 로고    scopus 로고
    • Simulation and analysis of cryogenic air separation process with LNG cold energy utilization
    • Y. Xiong, and Ben Hua Simulation and analysis of cryogenic air separation process with LNG cold energy utilization Adv. Mater. Res. 881-883 2014 653 658
    • (2014) Adv. Mater. Res. , vol.881-883 , pp. 653-658
    • Xiong, Y.1    Hua, B.2
  • 42
    • 67349278569 scopus 로고    scopus 로고
    • Simulation and optimization of cryogenic air separation units using a homotopy-based backtracking method
    • L. Zhu, Z. Chen, X. Chen, Z. Shao, and J. Qian Simulation and optimization of cryogenic air separation units using a homotopy-based backtracking method Sep. Purif. Technol. 67 3 2009 262 270
    • (2009) Sep. Purif. Technol. , vol.67 , Issue.3 , pp. 262-270
    • Zhu, L.1    Chen, Z.2    Chen, X.3    Shao, Z.4    Qian, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.