메뉴 건너뛰기




Volumn 83, Issue , 2016, Pages 178-185

Impact of small-world network topology on the conventional artificial neural network for the diagnosis of diabetes

Author keywords

Diabetic; Feed forward artificial neural network; Small world network

Indexed keywords

ARTIFICIAL INTELLIGENCE; DIAGNOSIS; INTELLIGENT SYSTEMS; NEURAL NETWORKS;

EID: 84952324262     PISSN: 09600779     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.chaos.2015.11.029     Document Type: Article
Times cited : (58)

References (35)
  • 1
    • 84880928359 scopus 로고    scopus 로고
    • Fuzzy based modeling for diabetic diagnostic decision support using Artificial Neural Network
    • Rajeswari K., Vaithiyanathan V. Fuzzy based modeling for diabetic diagnostic decision support using Artificial Neural Network Int J Comput Sci Netw Secur 11 4 2011 126 130
    • (2011) Int J Comput Sci Netw Secur , vol.11 , Issue.4 , pp. 126-130
    • Rajeswari, K.1    Vaithiyanathan, V.2
  • 2
    • 84867177506 scopus 로고    scopus 로고
    • The past 200 years in diabetes
    • Polonsky KS. The past 200 years in diabetes N Engl J Med 367 2012 1332 1340
    • (2012) N Engl J Med , vol.367 , pp. 1332-1340
    • Polonsky, K.S.1
  • 3
    • 0031851293 scopus 로고    scopus 로고
    • Definition, Diagnosis and classification of diabetes mellitus and its complications. I. Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation
    • K.G. Alberti, P.Z. Zimmet Definition, Diagnosis and classification of diabetes mellitus and its complications. I. diagnosis and classification of diabetes mellitus provisional report of a WHO consultation Diabet Med. 15 1998 539 553
    • (1998) Diabet Med. , vol.15 , pp. 539-553
    • Alberti, K.G.1    Zimmet, P.Z.2
  • 4
    • 0003595629 scopus 로고    scopus 로고
    • World Development Indicators (wdi) T.
    • The World Development Indicators (WDI) World Bank April. 2010
    • (2010) World Bank
  • 7
    • 0002370418 scopus 로고    scopus 로고
    • A tutorial on learning with Bayesian networks
    • Kluwer Doldrecht. Netherlands
    • Heckerman D. A tutorial on learning with bayesian networks Learning in Graphical Models 1998 Kluwer Doldrecht. Netherlands
    • (1998) Learning in Graphical Models
    • Heckerman, D.1
  • 9
    • 68949112582 scopus 로고    scopus 로고
    • A clinical decision support system using multilayer perceptron neural network to assess well being in diabetes
    • Narasingarao MR, Manda R., Sridhar GR, Madhu K., Rao AA. A clinical decision support system using multilayer perceptron neural network to assess well being in diabetes J. Assoc. Phys. India 57 2009 127 133
    • (2009) J. Assoc. Phys. India , vol.57 , pp. 127-133
    • Narasingarao, M.R.1    Manda, R.2    Sridhar, G.R.3    Madhu, K.4    Rao, A.A.5
  • 10
    • 84863366528 scopus 로고    scopus 로고
    • Performance comparison between Logistic regressions, Decision trees and multilayer perceptron in predicting peripheral neuropathy in type 2 diabetes mellitus
    • Li CP, Zhi XY, Ma J., Cui Z., Zhu ZL, and Zhang C. et al. Performance comparison between Logistic regressions, Decision trees and multilayer perceptron in predicting peripheral neuropathy in type 2 diabetes mellitus Chin Med J 125 2012 851 857
    • (2012) Chin Med J , vol.125 , pp. 851-857
    • Li, C.P.1    Zhi, X.Y.2    Ma, J.3    Cui, Z.4    Zhu, Z.L.5    Zhang, C.6
  • 11
    • 84952330439 scopus 로고    scopus 로고
    • Application of artificial neural network and binary logistic regression in detection of diabetes status
    • Rahman A., Nesha K., Akter M., Uddin Md SG Application of artificial neural network and binary logistic regression in detection of diabetes status Sci J Public Health 1 1 2013 39 43
    • (2013) Sci J Public Health , vol.1 , Issue.1 , pp. 39-43
    • Rahman, A.1    Nesha, K.2    Akter, M.3    Uddin, M.S.4
  • 12
    • 84963591308 scopus 로고    scopus 로고
    • Diagnosing diabetes type II using a soft intelligent binary classification model
    • Khashei M., Eftekhari S., Parvizian J. Diagnosing diabetes type II using a soft intelligent binary classification model Rev Bioinf Biom 1 1 2012
    • (2012) Rev Bioinf Biom , vol.1 , Issue.1
    • Khashei, M.1    Eftekhari, S.2    Parvizian, J.3
  • 13
    • 84964008409 scopus 로고    scopus 로고
    • Data pre-processing and neural network algorithms for diagnosis of type II diabetes: A survey
    • Anand R., Kirar VPS, Burse K. Data pre-processing and neural network algorithms for diagnosis of type ii diabetes: A survey Int J Eng Adv Technol (IJEAT) 2 1 2012
    • (2012) Int J Eng Adv Technol (IJEAT) , vol.2 , Issue.1
    • Anand, R.1    Kirar, V.P.S.2    Burse, K.3
  • 16
    • 81855221658 scopus 로고    scopus 로고
    • Diagnosing diabetes using neural networks on small mobile devices
    • Karan O., Bayraktar C., Gumuskaya H., Karlik B. Diagnosing diabetes using neural networks on small mobile devices Expert Syst Appl 39 1 2012 54 60
    • (2012) Expert Syst Appl , vol.39 , Issue.1 , pp. 54-60
    • Karan, O.1    Bayraktar, C.2    Gumuskaya, H.3    Karlik, B.4
  • 17
    • 60349107274 scopus 로고    scopus 로고
    • A comparative study on diabetes disease diagnosis using neural networks
    • Temurtas H., Yumusak N., Temurtas F. A comparative study on diabetes disease diagnosis using neural networks Expert Syst Appl 36 2009 8610 8615
    • (2009) Expert Syst Appl , vol.36 , pp. 8610-8615
    • Temurtas, H.1    Yumusak, N.2    Temurtas, F.3
  • 18
    • 77953769694 scopus 로고    scopus 로고
    • Comparison of artificial neural network and binary logistic regression for determination of impaired glucose tolerance/diabetes
    • Kazemnejad A., Batvandi Z., Faradmal J. Comparison of artificial neural network and binary logistic regression for determination of impaired glucose tolerance/diabetes East Mediterr Health J 16 6 2010 615 620
    • (2010) East Mediterr Health J , vol.16 , Issue.6 , pp. 615-620
    • Kazemnejad, A.1    Batvandi, Z.2    Faradmal, J.3
  • 19
    • 0032482432 scopus 로고    scopus 로고
    • Collective dynamics of 'small-world' networks
    • Watts DJ, Strogatz SH. Collective dynamics of 'small-world' networks Nature 393 1998 440 442
    • (1998) Nature , vol.393 , pp. 440-442
    • Watts, D.J.1    Strogatz, S.H.2
  • 20
    • 84922591049 scopus 로고    scopus 로고
    • Efficient behavior of small-world networks
    • Latora V., Marchiori M. Efficient behavior of small-world networks Phys Rev Lett 87 19 2001 198701
    • (2001) Phys Rev Lett , vol.87 , Issue.19
    • Latora, V.1    Marchiori, M.2
  • 22
    • 84883446551 scopus 로고    scopus 로고
    • Stochastic resonance in hybrid scale-free neuronal networks
    • YIlmaz E, Uzuntarla M., Ozer M., Perc M. Stochastic resonance in hybrid scale-free neuronal networks Physica A 392 22 2013 5735 5741
    • (2013) Physica A , vol.392 , Issue.22 , pp. 5735-5741
    • Yilmaz, E.1    Uzuntarla, M.2    Ozer, M.3    Perc, M.4
  • 23
    • 52949126964 scopus 로고    scopus 로고
    • Collective temporal coherence for subthreshold signal encoding on a stochastic small-world Hodgkin-Huxley neuronal network
    • Ozer M., Uzuntarla M., Kayikcioglu T., Graham LJ. Collective temporal coherence for subthreshold signal encoding on a stochastic small-world Hodgkin-Huxley neuronal network Phys Lett A 372 43 2008 6498 6503
    • (2008) Phys Lett A , vol.372 , Issue.43 , pp. 6498-6503
    • Ozer, M.1    Uzuntarla, M.2    Kayikcioglu, T.3    Graham, L.J.4
  • 24
    • 84876153090 scopus 로고    scopus 로고
    • Collective firing regularity of a scale-free Hodgkin-Huxley neuronal network in response to a subthreshold signal
    • YIlmaz E., Ozer M. Collective firing regularity of a scale-free Hodgkin-Huxley neuronal network in response to a subthreshold signal Phys Lett A 377 18 2013 1301 1307
    • (2013) Phys Lett A , vol.377 , Issue.18 , pp. 1301-1307
    • Yilmaz, E.1    Ozer, M.2
  • 25
    • 13144282731 scopus 로고    scopus 로고
    • Fastest learning in small-world neural networks
    • Simard D., Nadeau L., Kroger H. Fastest learning in small-world neural networks Phys Lett A 336 2005 8 15
    • (2005) Phys Lett A , vol.336 , pp. 8-15
    • Simard, D.1    Nadeau, L.2    Kroger, H.3
  • 26
    • 84897858227 scopus 로고    scopus 로고
    • Impact of small-world topology on the performance of a feed-forward artificial neural network based on 2 different real-life problems
    • Erkaymaz O., Ozer M, Yumusak N. Impact of small-world topology on the performance of a feed-forward artificial neural network based on 2 different real-life problems Turk J Elec Eng Comp Sci 22 2014 708 718
    • (2014) Turk J Elec Eng Comp Sci , vol.22 , pp. 708-718
    • Erkaymaz, O.1    Ozer, M.2    Yumusak, N.3
  • 27
    • 84879368650 scopus 로고    scopus 로고
    • A multilayer feed forward small-world neural network controller and its application on electrohydraulic actuation system
    • Article ID 568796
    • Li X., Xu F., Zhang J, Wang S. A multilayer feed forward small-world neural network controller and its application on electrohydraulic actuation system J Appl Math 2013; 2013 Article ID 568796
    • (2013) J Appl Math 2013
    • Li, X.1    Xu, F.2    Zhang, J.3    Wang, S.4
  • 28
    • 0032029156 scopus 로고    scopus 로고
    • ARTMAP-IC and medical diagnosis: Instance counting and inconsistent cases
    • Carpenter GA, Markuzon N ARTMAP-IC and medical diagnosis: instance counting and inconsistent cases Neural Netw 11 1998 323 336
    • (1998) Neural Netw , vol.11 , pp. 323-336
    • Carpenter, G.A.1    Markuzon, N.2
  • 31
    • 34249285900 scopus 로고    scopus 로고
    • An expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease
    • Polat K, Gunes S An expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease Digit Signal Process 17 4 2007 702 710
    • (2007) Digit Signal Process , vol.17 , Issue.4 , pp. 702-710
    • Polat, K.1    Gunes, S.2
  • 32
    • 34248592215 scopus 로고    scopus 로고
    • A cascade learning system for classification of diabetes disease: Generalized discriminant analysis and least square support vector machine
    • Polat K., Gunes S, Aslan A. A cascade learning system for classification of diabetes disease: generalized discriminant analysis and least square support vector machine Expert Syst Appl 34 1 2008 214 221
    • (2008) Expert Syst Appl , vol.34 , Issue.1 , pp. 214-221
    • Polat, K.1    Gunes, S.2    Aslan, A.3
  • 33
    • 0000629975 scopus 로고
    • Cross-validation choice and assessment of statistical predictions (with Discussion)
    • Stone M. Cross-validation choice and assessment of statistical predictions (with Discussion) J R Stat Soc 36 1974 111 1474
    • (1974) J R Stat Soc , vol.36 , pp. 111-1474
    • Stone, M.1
  • 34
    • 0031255580 scopus 로고    scopus 로고
    • Selecting and interpreting measures of thematic classification accuracy
    • Stehman SV. Selecting and interpreting measures of thematic classification accuracy Remote Sens Environ 62 1997 77 89
    • (1997) Remote Sens Environ , vol.62 , pp. 77-89
    • Stehman, S.V.1
  • 35
    • 84940653288 scopus 로고    scopus 로고
    • Comparison of the effects of cross-validation methods on determining performances of classifiers used in diagnosing congestive heart failure
    • Isler Y., Narin A., Ozer M. Comparison of the effects of cross-validation methods on determining performances of classifiers used in diagnosing congestive heart failure Measurement Sci Rev 15 4 2015 196 201
    • (2015) Measurement Sci Rev , vol.15 , Issue.4 , pp. 196-201
    • Isler, Y.1    Narin, A.2    Ozer, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.