-
1
-
-
79960609227
-
Predicting flu trends using Twitter data
-
IEEE
-
H. Achrekar, A. Gandhe, R. Lazarus, S.-H. Yu, and B. Liu. Predicting Flu Trends using Twitter Data. In INFOCOM, pages 702-707. IEEE, 2011.
-
(2011)
INFOCOM
, pp. 702-707
-
-
Achrekar, H.1
Gandhe, A.2
Lazarus, R.3
Yu, S.-H.4
Liu, B.5
-
2
-
-
78649842272
-
Predicting the future with Social media
-
IEEE
-
S. Asur and B. A. Huberman. Predicting the Future with Social Media. In WI-IAT, volume 1, pages 492-499. IEEE, 2010.
-
(2010)
WI-IAT
, vol.1
, pp. 492-499
-
-
Asur, S.1
Huberman, B.A.2
-
4
-
-
84894238224
-
Every tweet counts? How sentiment analysis of Social media can improve our knowledge of citizens' political preferences with an application to Italy and France
-
A. Ceron, L. Curini, S. M. Iacus, and G. Porro. Every Tweet Counts? How Sentiment Analysis of Social Media can Improve our Knowledge of Citizens' Political Preferences with an Application to Italy and France. New Media & Society, 16(2):340-358, 2014.
-
(2014)
New Media & Society
, vol.16
, Issue.2
, pp. 340-358
-
-
Ceron, A.1
Curini, L.2
Iacus, S.M.3
Porro, G.4
-
6
-
-
84899560157
-
Using friends as sensors to detect global-scale contagious outbreaks
-
04
-
M. Garcia-Herranz, E. Moro, M. Cebrian, N. A. Christakis, and J. H. Fowler. Using friends as sensors to detect global-scale contagious outbreaks. PLoS ONE, 9(4):e92413, 04 2014.
-
(2014)
PLoS ONE
, vol.9
, Issue.4
, pp. e92413
-
-
Garcia-Herranz, M.1
Moro, E.2
Cebrian, M.3
Christakis, N.A.4
Fowler, J.H.5
-
7
-
-
84889606284
-
On sampling the wisdom of crowds: Random vs. Expert sampling of the Twitter stream
-
ACM
-
S. Ghosh, M. B. Zafar, P. Bhattacharya, N. Sharma, N. Ganguly, and K. Gummadi. On Sampling the Wisdom of Crowds: Random vs. Expert Sampling of the Twitter Stream. In CIKM, pages 1739-1744. ACM, 2013.
-
(2013)
CIKM
, pp. 1739-1744
-
-
Ghosh, S.1
Zafar, M.B.2
Bhattacharya, P.3
Sharma, N.4
Ganguly, N.5
Gummadi, K.6
-
8
-
-
84893233396
-
Dengue surveillance based on a computational model of spatio-temporal locality of twitter
-
ACM
-
J. Gomide, A. Veloso, W. Meira Jr, V. Almeida, F. Benevenuto, F. Ferraz, and M. Teixeira. Dengue Surveillance Based on a Computational Model of Spatio-temporal Locality of Twitter. In WebSci, pages 1-8. ACM, 2011.
-
(2011)
WebSci
, pp. 1-8
-
-
Gomide, J.1
Veloso, A.2
Meira, W.3
Almeida, V.4
Benevenuto, F.5
Ferraz, F.6
Teixeira, M.7
-
9
-
-
84897705730
-
Assessing the bias in samples of large online networks
-
S. González-Bailón, N. Wang, A. Rivero, J. Borge-Holthoefer, and Y. Moreno. Assessing the Bias in Samples of Large Online Networks. Social Networks, 38:16-27, 2014.
-
(2014)
Social Networks
, vol.38
, pp. 16-27
-
-
González-Bailón, S.1
Wang, N.2
Rivero, A.3
Borge-Holthoefer, J.4
Moreno, Y.5
-
10
-
-
84958544044
-
Two 1%s don't make a whole: Comparing simultaneous samples from twitter's streaming API
-
Springer
-
K. Joseph, P. M. Landwehr, and K. M. Carley. Two 1%s Don't Make a Whole: Comparing Simultaneous Samples from Twitter's Streaming API. In Social Computing, Behavioral-Cultural Modeling and Prediction, pages 75-83. Springer, 2014.
-
(2014)
Social Computing, Behavioral-cultural Modeling and Prediction
, pp. 75-83
-
-
Joseph, K.1
Landwehr, P.M.2
Carley, K.M.3
-
11
-
-
84911191599
-
On the endogenesis of twitter's spritzer and gardenhose sample streams
-
D. Kerg, R. Roedler, and S. Seeber. On the Endogenesis of Twitter's Spritzer and Gardenhose Sample Streams. In ASONAM, pages 357-364, 2014.
-
(2014)
ASONAM
, pp. 357-364
-
-
Kerg, D.1
Roedler, R.2
Seeber, S.3
-
12
-
-
85158141696
-
Tweettracker: An analysis tool for humanitarian and disaster relief
-
S. Kumar, G. Barbier, M. A. Abbasi, and H. Liu. TweetTracker: An Analysis Tool for Humanitarian and Disaster Relief. In ICWSM, pages 661-662, 2011.
-
(2011)
ICWSM
, pp. 661-662
-
-
Kumar, S.1
Barbier, G.2
Abbasi, M.A.3
Liu, H.4
-
13
-
-
84891132920
-
Towards social data platform: Automatic topic-focused monitor for Twitter stream
-
R. Li, S. Wang, and K. C.-C. Chang. Towards Social Data Platform: Automatic Topic-focused Monitor for Twitter Stream. VLDB, 6(14):1966-1977, 2013.
-
(2013)
VLDB
, vol.6
, Issue.14
, pp. 1966-1977
-
-
Li, R.1
Wang, S.2
Chang, K.C.-C.3
-
14
-
-
84907468339
-
Business intelligence from Social media: A study from the VAST box office challenge
-
IEEE, Sept
-
Y. Lu, F. Wang, and R. Maciejewski. Business Intelligence from Social Media: A Study from the VAST Box Office Challenge. Computer Graphics and Applications, IEEE, 34(5):58-69, Sept 2014.
-
(2014)
Computer Graphics and Applications
, vol.34
, Issue.5
, pp. 58-69
-
-
Lu, Y.1
Wang, F.2
Maciejewski, R.3
-
15
-
-
0001457509
-
Some methods for classification and analysis of multivariate observations
-
Oakland, CA, USA.
-
J. MacQueen et al. Some Methods for Classification and Analysis of Multivariate Observations. In BSMSP, volume 1, pages 281-297. Oakland, CA, USA., 1967.
-
(1967)
BSMSP
, vol.1
, pp. 281-297
-
-
MacQueen, J.1
-
16
-
-
84946691656
-
Predictions based on twitter-a critical view on the research process
-
IEEE
-
L. Madlberger and A. Almansour. Predictions Based on Twitter-A Critical View on the Research Process. In ICODSE, pages 1-6. IEEE, 2014.
-
(2014)
ICODSE
, pp. 1-6
-
-
Madlberger, L.1
Almansour, A.2
-
17
-
-
85129712362
-
Finding eyewitness tweets during crises
-
F. Morstatter, N. Lubold, H. Pon-Barry, J. Pfeffer, and H. Liu. Finding Eyewitness Tweets During Crises. ACL, pages 23-27, 2014.
-
(2014)
ACL
, pp. 23-27
-
-
Morstatter, F.1
Lubold, N.2
Pon-Barry, H.3
Pfeffer, J.4
Liu, H.5
-
18
-
-
84990955096
-
When is it Biased?: Assessing the Representativeness of Twitter's Streaming API
-
F. Morstatter, J. Pfeffer, and H. Liu. When is it Biased?: Assessing the Representativeness of Twitter's Streaming API. In WWW, pages 555-556, 2014.
-
(2014)
WWW
, pp. 555-556
-
-
Morstatter, F.1
Pfeffer, J.2
Liu, H.3
-
19
-
-
84892704954
-
Is the sample good enough? Comparing data from twitter's streaming API with twitter's firehose
-
F. Morstatter, J. Pfeffer, H. Liu, and K. M. Carley. Is the Sample Good Enough? Comparing Data from Twitter's Streaming API with Twitter's Firehose. In ICWSM, pages 400-408, 2013.
-
(2013)
ICWSM
, pp. 400-408
-
-
Morstatter, F.1
Pfeffer, J.2
Liu, H.3
Carley, K.M.4
-
20
-
-
0041875229
-
On spectral clustering: Analysis and an algorithm
-
MIT Press
-
A. Y. Ng, M. I. Jordan, and Y. Weiss. On Spectral Clustering: Analysis and an Algorithm. In NIPS, pages 849-856. MIT Press, 2001.
-
(2001)
NIPS
, pp. 849-856
-
-
Ng, A.Y.1
Jordan, M.I.2
Weiss, Y.3
-
21
-
-
84909954481
-
Big questions for Social media big data: Representativeness, validity and other methodological pitfalls
-
Z. Tufekci. Big Questions for Social Media Big Data: Representativeness, Validity and Other Methodological Pitfalls. In ICWSM, pages 505-514, 2014.
-
(2014)
ICWSM
, pp. 505-514
-
-
Tufekci, Z.1
-
22
-
-
84890668120
-
Predicting elections with twitter: What 140 characters reveal about political sentiment
-
A. Tumasjan, T. O. Sprenger, P. G. Sandner, and I. M. Welpe. Predicting Elections with Twitter: What 140 Characters Reveal about Political Sentiment. ICWSM, 10:178-185, 2010.
-
(2010)
ICWSM
, vol.10
, pp. 178-185
-
-
Tumasjan, A.1
Sprenger, T.O.2
Sandner, P.G.3
Welpe, I.M.4
-
23
-
-
77954026162
-
Microblogging during two natural hazards events: What Twitter may contribute to situational awareness
-
ACM
-
S. Vieweg, A. L. Hughes, K. Starbird, and L. Palen. Microblogging During Two Natural Hazards Events: What Twitter May Contribute to Situational Awareness. In CHI, pages 1079-1088. ACM, 2010.
-
(2010)
CHI
, pp. 1079-1088
-
-
Vieweg, S.1
Hughes, A.L.2
Starbird, K.3
Palen, L.4
|