메뉴 건너뛰기




Volumn 121, Issue , 2016, Pages 101-107

Classification of geographic origin of rice by data mining and inductively coupled plasma mass spectrometry

Author keywords

Classification; Data mining; F score; ICP MS; Rice; Support vector machines

Indexed keywords

CEREAL PRODUCTS; CLASSIFICATION (OF INFORMATION); DECISION TREES; FORECASTING; INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY; MASS SPECTROMETRY; RUBIDIUM; SUPPORT VECTOR MACHINES;

EID: 84951863017     PISSN: 01681699     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compag.2015.11.009     Document Type: Article
Times cited : (107)

References (34)
  • 1
    • 85015549931 scopus 로고    scopus 로고
    • Genetic programming data construction method to handle data scarcity problem
    • AL-Bakary A.M., Ali S.H. Genetic programming data construction method to handle data scarcity problem. IJACT Int. J. Adv. Comput. Technol. 2010.
    • (2010) IJACT Int. J. Adv. Comput. Technol.
    • AL-Bakary, A.M.1    Ali, S.H.2
  • 2
    • 84926188310 scopus 로고    scopus 로고
    • A simple and practical control of the authenticity of organic sugarcane samples based on the use of machine-learning algorithms and trace elements determination by inductively coupled plasma mass spectrometry
    • Barbosa R.M., Batista B.L., Barião C.V., Varrique R.M., Coelho V.A., Campiglia A.D., Barbosa F. A simple and practical control of the authenticity of organic sugarcane samples based on the use of machine-learning algorithms and trace elements determination by inductively coupled plasma mass spectrometry. Food Chem. 2015, 184:154-159.
    • (2015) Food Chem. , vol.184 , pp. 154-159
    • Barbosa, R.M.1    Batista, B.L.2    Barião, C.V.3    Varrique, R.M.4    Coelho, V.A.5    Campiglia, A.D.6    Barbosa, F.7
  • 3
    • 84921967570 scopus 로고    scopus 로고
    • The use of decision trees and naïve bayes algorithms and trace element patterns for controlling the authenticity of free-range-pastured hens' eggs
    • Barbosa R.M., Nacano L.R., Freitas R., Batista B.L., Barbosa F. The use of decision trees and naïve bayes algorithms and trace element patterns for controlling the authenticity of free-range-pastured hens' eggs. J. Food Sci. 2014, 79:C1672-C1677.
    • (2014) J. Food Sci. , vol.79 , pp. C1672-C1677
    • Barbosa, R.M.1    Nacano, L.R.2    Freitas, R.3    Batista, B.L.4    Barbosa, F.5
  • 4
    • 78649560016 scopus 로고    scopus 로고
    • Survey of 13 trace elements of toxic and nutritional significance in rice from brazil and exposure assessment
    • Batista B., Souza V.d.O., Silva F.d., Barbosa F.J. Survey of 13 trace elements of toxic and nutritional significance in rice from brazil and exposure assessment. Food Additives Contam.: Part B 2010, 3:253-262.
    • (2010) Food Additives Contam.: Part B , vol.3 , pp. 253-262
    • Batista, B.1    Souza, V.2    Silva, F.3    Barbosa, F.J.4
  • 5
    • 0017166604 scopus 로고
    • Cadmium availability to rice in sludge-amended soil under "flood" and "nonflood" culture
    • Bingham F., Page A., Mahler R., Ganje T. Cadmium availability to rice in sludge-amended soil under "flood" and "nonflood" culture. Soil Sci. Soc. Am. J. 1976, 50:715-719.
    • (1976) Soil Sci. Soc. Am. J. , vol.50 , pp. 715-719
    • Bingham, F.1    Page, A.2    Mahler, R.3    Ganje, T.4
  • 6
  • 7
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Mining Knowl. Discovery 1998, 2:121-167.
    • (1998) Data Mining Knowl. Discovery , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 8
    • 84884623312 scopus 로고    scopus 로고
    • Discrimination of geographical origin of rice based on multi-element fingerprinting by high resolution inductively coupled plasma mass spectrometry
    • Cheajesadagul P., Arnaudguilhem C., Shiowatana J., Siripinyanond A., Szpunar J. Discrimination of geographical origin of rice based on multi-element fingerprinting by high resolution inductively coupled plasma mass spectrometry. Food Chem. 2013, 141:3504-3509.
    • (2013) Food Chem. , vol.141 , pp. 3504-3509
    • Cheajesadagul, P.1    Arnaudguilhem, C.2    Shiowatana, J.3    Siripinyanond, A.4    Szpunar, J.5
  • 9
    • 34047138318 scopus 로고    scopus 로고
    • Combining svms with various feature selection strategies
    • Springer, Berlin Heidelberg
    • Chen Y.-W., Lin C.-J. Combining svms with various feature selection strategies. Feature Extraction 2006, vol. 207:315-324. Springer, Berlin Heidelberg.
    • (2006) Feature Extraction , vol.207 , pp. 315-324
    • Chen, Y.-W.1    Lin, C.-J.2
  • 10
  • 12
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • Dash M., Liu H. Feature selection for classification. Intell. Data Anal. 1997, 1:131-156.
    • (1997) Intell. Data Anal. , vol.1 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 14
    • 85015542366 scopus 로고    scopus 로고
    • Sistema de cultivo de arroz irrigado no brasil
    • Embrapa, 2005. Sistema de cultivo de arroz irrigado no brasil.http://sistemasdeproducao.cnptia.embrapa.br/FontesHTML/Arroz/ArrozIrrigadoBrasil/index.htm.
    • (2005)
  • 15
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to roc analysis
    • Fawcett T. An introduction to roc analysis. Pattern Recogn. Lett. 2006, 27.
    • (2006) Pattern Recogn. Lett. , pp. 27
    • Fawcett, T.1
  • 16
    • 0032146239 scopus 로고    scopus 로고
    • Artificial neural networks (the multilayer perceptron)-a review of applications in the atmospheric sciences
    • Gardner M., Dorling S. Artificial neural networks (the multilayer perceptron)-a review of applications in the atmospheric sciences. Atmos. Environ. 1998, 32:2627-2636.
    • (1998) Atmos. Environ. , vol.32 , pp. 2627-2636
    • Gardner, M.1    Dorling, S.2
  • 17
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I., Elisseeff A. An introduction to variable and feature selection. J. Machine Learning Res. 2003, 3:1157-1182.
    • (2003) J. Machine Learning Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 18
  • 19
    • 59249094016 scopus 로고    scopus 로고
    • caret: Classification and Regression Training
    • r package version 6.0-47.
    • Kuhn, M., 2015. caret: Classification and Regression Training. r package version 6.0-47. http://CRAN.R-project.org/package=caret.
    • (2015)
    • Kuhn, M.1
  • 20
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomforest
    • Liaw A., Wiener M. Classification and regression by randomforest. R News 2002, 2:18-22.
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 21
    • 1942504268 scopus 로고    scopus 로고
    • On the use of counterpropagation artificial neural networks to characterize italian rice varieties
    • Marini F., Zupan J., Magrí A.L. On the use of counterpropagation artificial neural networks to characterize italian rice varieties. Anal. Chim. Acta 2004, 510:231-240.
    • (2004) Anal. Chim. Acta , vol.510 , pp. 231-240
    • Marini, F.1    Zupan, J.2    Magrí, A.L.3
  • 22
    • 80051660823 scopus 로고    scopus 로고
    • Data mining methods in the prediction of dementia: a real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests
    • Maroco J., Silva D., Rodrigues A., Guerreiro M., Santana I., de Mendonça A. Data mining methods in the prediction of dementia: a real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests. BMC Res. Notes 2011, 4.
    • (2011) BMC Res. Notes , vol.4
    • Maroco, J.1    Silva, D.2    Rodrigues, A.3    Guerreiro, M.4    Santana, I.5    de Mendonça, A.6
  • 24
    • 84863304598 scopus 로고    scopus 로고
    • R: A Language and Environment for Statistical Computing
    • R Foundation for Statistical Computing Vienna, Austria.
    • R Core Team, 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing Vienna, Austria. http://www.R-project.org/.
    • (2014)
  • 25
  • 26
    • 84923328437 scopus 로고    scopus 로고
    • Smote-ipf: addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering
    • Sáez J.A., Luengo J., Stefanowski J., Herrera F. Smote-ipf: addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering. Inform. Sci. 2015, 291:184-203.
    • (2015) Inform. Sci. , vol.291 , pp. 184-203
    • Sáez, J.A.1    Luengo, J.2    Stefanowski, J.3    Herrera, F.4
  • 28
    • 0001031519 scopus 로고    scopus 로고
    • Classification of wine samples by means of artificial neural networks and discrimination analytical methods
    • Sun L.-X., Danzer K., Thiel G. Classification of wine samples by means of artificial neural networks and discrimination analytical methods. Fresenius' J. Anal. Chem. 1997, 359(2):143-149.
    • (1997) Fresenius' J. Anal. Chem. , vol.359 , Issue.2 , pp. 143-149
    • Sun, L.-X.1    Danzer, K.2    Thiel, G.3
  • 29
    • 39749180868 scopus 로고    scopus 로고
    • Geographical origin of polished rice based on multiple element and stable isotope analyses
    • Suzuki Y., Chikaraishi Y., Ogawa N.O., Ohkouchi N., Korenaga T. Geographical origin of polished rice based on multiple element and stable isotope analyses. Food Chem. 2008, 109:470-475.
    • (2008) Food Chem. , vol.109 , pp. 470-475
    • Suzuki, Y.1    Chikaraishi, Y.2    Ogawa, N.O.3    Ohkouchi, N.4    Korenaga, T.5
  • 31
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • Tong S., Koller D. Support vector machine active learning with applications to text classification. J. Machine Learning Res. 2002, 2:45-66.
    • (2002) J. Machine Learning Res. , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 32
    • 33644860703 scopus 로고    scopus 로고
    • Bias in error estimation when using cross-validation for model selection
    • Varma S., Simon R. Bias in error estimation when using cross-validation for model selection. BMC Bioinform. 2006, 7.
    • (2006) BMC Bioinform. , vol.7
    • Varma, S.1    Simon, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.