-
1
-
-
2742542363
-
-
and references cited therein.
-
Lutsenko, I. F., Baukov, Y. I. and Burlachenko, G. S., J. Organometal. Chem., 1966, 6, 496, and references cited therein.
-
(1966)
J. Organometal. Chem.
, vol.6
, pp. 496
-
-
Lutsenko, I.F.1
Baukov, Y.I.2
Burlachenko, G.S.3
-
3
-
-
33947085120
-
-
Rathke, M. W. and Sullivan, D. F., J. Am. Chem. Soc., 1973, 95, 3050.
-
(1973)
J. Am. Chem. Soc.
, vol.95
, pp. 3050
-
-
Rathke, M.W.1
Sullivan, D.F.2
-
4
-
-
0000649187
-
-
Olofson, R. A. and Dougherty, C. M., J. Am. Chem. Soc., 1973, 95, 582.
-
(1973)
J. Am. Chem. Soc.
, vol.95
, pp. 582
-
-
Olofson, R.A.1
Dougherty, C.M.2
-
5
-
-
84953022466
-
Addition of tributyltin chloride to the ester enolate obtained from lithium dicyclohexylamide and ethyl isobutyrate, followed by a non-aqueous work-up, gave only the C-stannylated product.
-
In contrast, silylation of the same ester enolate is known to give 99% of the O-silylated product
-
Addition of tributyltin chloride to the ester enolate obtained from lithium dicyclohexylamide and ethyl isobutyrate, followed by a non-aqueous work-up, gave only the C-stannylated product. In contrast, silylation of the same ester enolate is known to give 99% of the O-silylated product.
-
-
-
-
6
-
-
84943913171
-
-
Rathke, M. W. and Sullivan, D. F., Synth. Commun., 1973, 2, 67.
-
(1973)
Synth. Commun.
, vol.2
, pp. 67
-
-
Rathke, M.W.1
Sullivan, D.F.2
-
7
-
-
84984159414
-
-
Meganem, F., Besace, Y. and Lequan, M., Synthesis, 1977, 310.
-
(1977)
Synthesis
, pp. 310
-
-
Meganem, F.1
Besace, Y.2
Lequan, M.3
-
8
-
-
84953009870
-
Some a-stannyl esters can be prepared by addition of tributylstannane to 3, 3-disubstituted acrylates
-
Some a-stannyl esters can be prepared by addition of tributylstannane to 3, 3-disubstituted acrylates
-
-
-
-
9
-
-
0011233020
-
-
Pereyre, M., Colin, G. and Valade, J., C. R. Acad. Sci., Ser. C,1967, 264, 1204.
-
(1967)
C. R. Acad. Sci., Ser. C
, vol.264
, pp. 1204
-
-
Pereyre, M.1
Colin, G.2
Valade, J.3
-
10
-
-
84953011571
-
1H NMR spectra were taken in deuterated chloroform using tetramethylsilane as internal standard.
-
IR spectra were taken neat. 1: 1H NMR&1.83 (s, 2H), 1.4 (s, 9H), 1, 8 - 0.7 (m, 27H); IR 1690 cm-1. 2:lH NMR 6 4.05 (q, 2H), 1.92 (s, 2H), 1.8-0.7 (m, 30H); IR 1700 cm-1. 3: 1H NMR 6 3.6 (s, 3H), 1.9 (s, 2H), 1.8-0.7 (m, 27H); IR 1720 cm-1. 4: 1H NMR 6 4.1 Xq, 2H), 2.4 (q, 1H), 1, 8 - 0.7 (m, 33H); IR 1700 cm-1. 5: 1H NMR 6 4.1 (q, 2H), 1.4 (s, 6H), 1.8-0.7 (m, 30H); IR 1700 cm-16: 1H NMR 6 3.6 (s,3H), 1.4 (s,6H), 1.8-0.7 (m,27H); IR 1700 cm-1. 7: 1H NMR 6 4.1 (q,2H), 2.3 (m,1H), 1.8-0.7 (m,41H); IR 1700 cm-1.
-
1H NMR spectra were taken in deuterated chloroform using tetramethylsilane as internal standard. IR spectra were taken neat. 1: 1H NMR&1.83 (s, 2H), 1.4 (s, 9H), 1, 8 - 0.7 (m, 27H); IR 1690 cm-1. 2:lH NMR 6 4.05 (q, 2H), 1.92 (s, 2H), 1.8-0.7 (m, 30H); IR 1700 cm-1. 3: 1H NMR 6 3.6 (s, 3H), 1.9 (s, 2H), 1.8-0.7 (m, 27H); IR 1720 cm-1. 4: 1H NMR 6 4.1 Xq, 2H), 2.4 (q, 1H), 1, 8 - 0.7 (m, 33H); IR 1700 cm-1. 5: 1H NMR 6 4.1 (q, 2H), 1.4 (s, 6H), 1.8-0.7 (m, 30H); IR 1700 cm-16: 1H NMR 6 3.6 (s,3H), 1.4 (s,6H), 1.8-0.7 (m,27H); IR 1700 cm-1. 7: 1H NMR 6 4.1 (q,2H), 2.3 (m,1H), 1.8-0.7 (m,41H); IR 1700 cm-1
-
-
-
|