메뉴 건너뛰기




Volumn , Issue , 2014, Pages 387-414

Hydrologic prediction and uncertainty quantification

Author keywords

[No Author keywords available]

Indexed keywords

HYDROLOGY; SURFACE MEASUREMENT;

EID: 84951263600     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1201/b16683     Document Type: Chapter
Times cited : (16)

References (88)
  • 1
    • 33847624519 scopus 로고    scopus 로고
    • An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction
    • Ajami, N.K., Q. Duan, and S. Sorooshian (2007), An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction, Water Resources Research, 43(1), W01403.
    • (2007) Water Resources Research , vol.43 , Issue.1 , pp. W01403
    • Ajami, N.K.1    Duan, Q.2    Sorooshian, S.3
  • 2
    • 0035655814 scopus 로고    scopus 로고
    • An ensemble adjustment Kalman filter for data assimilation
    • Anderson, J.L, (2001), An ensemble adjustment Kalman filter for data assimilation, Monthly Weather Review, 129(12), 2884-2903.
    • (2001) Monthly Weather Review , vol.129 , Issue.12 , pp. 2884-2903
    • Anderson, J.L.1
  • 3
  • 4
    • 0034989285 scopus 로고    scopus 로고
    • A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall-runoff modeling
    • Bates, B.C. and E.P. Campbell (2001), A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall-runoff modeling, Water Resources Research, 37(4), 937-947.
    • (2001) Water Resources Research , vol.37 , Issue.4 , pp. 937-947
    • Bates, B.C.1    Campbell, E.P.2
  • 5
    • 0014629731 scopus 로고
    • The combination of forecasts
    • Bates, J.M. and C.W.J. Granger (1969), The combination of forecasts, OR, 20(4), 451-468.
    • (1969) OR , vol.20 , Issue.4 , pp. 451-468
    • Bates, J.M.1    Granger, C.W.J.2
  • 6
    • 0027009437 scopus 로고
    • The future of distributed models: Model calibration and uncertainty prediction
    • Beven, K. and A. Binley (1992), The future of distributed models: Model calibration and uncertainty prediction, Hydrological Processes, 6(3), 279-298.
    • (1992) Hydrological Processes , vol.6 , Issue.3 , pp. 279-298
    • Beven, K.1    Binley, A.2
  • 7
    • 0035426008 scopus 로고    scopus 로고
    • Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology
    • Beven, K. and J. Freer (2001), Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology, Journal of Hydrology, 249(1), 11-29.
    • (2001) Journal of Hydrology , vol.249 , Issue.1 , pp. 11-29
    • Beven, K.1    Freer, J.2
  • 8
    • 80054684007 scopus 로고    scopus 로고
    • On the colour and spin of epistemic error (and what we might do about it)
    • Beven, K., P.J. Smith, and A. Wood (2011), On the colour and spin of epistemic error (and what we might do about it), Hydrology and Earth System Sciences, 15, 3123-3133.
    • (2011) Hydrology and Earth System Sciences , vol.15 , pp. 3123-3133
    • Beven, K.1    Smith, P.J.2    Wood, A.3
  • 9
    • 0034508765 scopus 로고    scopus 로고
    • Toward improved calibration of hydrologic models:Combining the strengths of manual and automatic methods
    • Boyle, D.P., H.V. Gupta, and S. Sorooshian (2000), Toward improved calibration of hydrologic models:Combining the strengths of manual and automatic methods, Water Resources Research, 36(12), 3663-3674.
    • (2000) Water Resources Research , vol.36 , Issue.12 , pp. 3663-3674
    • Boyle, D.P.1    Gupta, H.V.2    Sorooshian, S.3
  • 10
    • 72149123038 scopus 로고    scopus 로고
    • Estimating the uncertain mathematical structure of a water balance model via Bayesian data assimilation
    • Bulygina, N. and H. Gupta (2009), Estimating the uncertain mathematical structure of a water balance model via Bayesian data assimilation, Water Resources Research, 45(12), W00B13.
    • (2009) Water Resources Research , vol.45 , Issue.12 , pp. W00B13
    • Bulygina, N.1    Gupta, H.2
  • 11
    • 79957517768 scopus 로고    scopus 로고
    • Correcting the mathematical structure of a hydrological model via Bayesian data assimilation
    • Bulygina, N. and H. Gupta (2011), Correcting the mathematical structure of a hydrological model via Bayesian data assimilation, Water Resources Research, 47(5), W05514.
    • (2011) Water Resources Research , vol.47 , Issue.5 , pp. W05514
    • Bulygina, N.1    Gupta, H.2
  • 12
    • 33645549317 scopus 로고    scopus 로고
    • Probabilistic quantitative precipitation estimation in complex terrain
    • Clark, M.P. and A.G. Slater (2006), Probabilistic quantitative precipitation estimation in complex terrain, Journal of Hydrometeorology, 7(1), 3-22.
    • (2006) Journal of Hydrometeorology , vol.7 , Issue.1 , pp. 3-22
    • Clark, M.P.1    Slater, A.G.2
  • 13
    • 51349141022 scopus 로고    scopus 로고
    • Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models
    • Clark, M.P., A.G. Slater, D.E. Rupp, R.A. Woods, J.A. Vrugt, H.V. Gupta, T. Wagener, and L.E. Hay (2008), Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models, Water Resources Research, 44, W00B02.
    • (2008) Water Resources Research , vol.44 , pp. W00B02
    • Clark, M.P.1    Slater, A.G.2    Rupp, D.E.3    Woods, R.A.4    Vrugt, J.A.5    Gupta, H.V.6    Wagener, T.7    Hay, L.E.8
  • 14
    • 69349101904 scopus 로고    scopus 로고
    • Ensemble flood forecasting: A review
    • Cloke, H.L. and F. Pappenberger (2009), Ensemble flood forecasting: A review, Journal of Hydrology, 375(3), 613-626.
    • (2009) Journal of Hydrology , vol.375 , Issue.3 , pp. 613-626
    • Cloke, H.L.1    Pappenberger, F.2
  • 16
    • 79451473599 scopus 로고    scopus 로고
    • Radiance data assimilation for operational snow and streamflow forecasting
    • DeChant, C. and H. Moradkhani (2011a), Radiance data assimilation for operational snow and streamflow forecasting, Advances in Water Resources, 34(3), 351-364.
    • (2011) Advances in Water Resources , vol.34 , Issue.3 , pp. 351-364
    • DeChant, C.1    Moradkhani, H.2
  • 17
    • 81355139449 scopus 로고    scopus 로고
    • Improving the characterization of initial condition for ensemble streamflow prediction using data assimilation
    • DeChant, C. and H. Moradkhani (2011b), Improving the characterization of initial condition for ensemble streamflow prediction using data assimilation, Hydrology and Earth Systems Sciences, 15, 3399-3410, DOI: 10.5194/hess-15-3399.
    • (2011) Hydrology and Earth Systems Sciences , vol.15 , pp. 3399-3410
    • DeChant, C.1    Moradkhani, H.2
  • 18
    • 84858807931 scopus 로고    scopus 로고
    • Examining the effectiveness and robustness of sequential data assimilation methods for quantification of uncertainty in hydrologic forecasting
    • DeChant, C.M. and H. Moradkhani (2012), Examining the effectiveness and robustness of sequential data assimilation methods for quantification of uncertainty in hydrologic forecasting, Water Resources Research, 48(4), W04518.
    • (2012) Water Resources Research , vol.48 , Issue.4 , pp. W04518
    • DeChant, C.M.1    Moradkhani, H.2
  • 19
    • 75749139354 scopus 로고    scopus 로고
    • Uncertainty in river discharge observations: A quantitative analysis
    • Di Baldassarre, G. and A. Montanari (2009), Uncertainty in river discharge observations: A quantitative analysis, Hydrology and Earth System Sciences, 13, 913-921.
    • (2009) Hydrology and Earth System Sciences , vol.13 , pp. 913-921
    • Di Baldassarre, G.1    Montanari, A.2
  • 20
    • 77952859980 scopus 로고    scopus 로고
    • A short exploration of structural noise
    • Doherty, J. and D. Welter (2010), A short exploration of structural noise, Water Resources Research, 46(5), W05525.
    • (2010) Water Resources Research , vol.46 , Issue.5 , pp. W05525
    • Doherty, J.1    Welter, D.2
  • 21
    • 33847274843 scopus 로고    scopus 로고
    • Multi-model ensemble hydrologic prediction using Bayesian model averaging
    • Duan, Q., N.K. Ajami, X. Gao, and S. Sorooshian (2007), Multi-model ensemble hydrologic prediction using Bayesian model averaging, Advances in Water Resources, 30(5), 1371-1386.
    • (2007) Advances in Water Resources , vol.30 , Issue.5 , pp. 1371-1386
    • Duan, Q.1    Ajami, N.K.2    Gao, X.3    Sorooshian, S.4
  • 22
    • 0026445234 scopus 로고
    • Effective and efficient global optimization for conceptual rainfall-runoff models
    • Duan, Q., S. Sorooshian, and V. Gupta (1992), Effective and efficient global optimization for conceptual rainfall-runoff models, Water Resources Research, 28(4), 1015-1031.
    • (1992) Water Resources Research , vol.28 , Issue.4 , pp. 1015-1031
    • Duan, Q.1    Sorooshian, S.2    Gupta, V.3
  • 23
    • 0028193070 scopus 로고
    • Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics
    • Evensen, G, (1994), Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, Journal of Geophysical Research, 99(C5), 10143-10162.
    • (1994) Journal of Geophysical Research , vol.99 , Issue.C5 , pp. 10143-10162
    • Evensen, G.1
  • 24
    • 0029659801 scopus 로고    scopus 로고
    • Bayesian estimation of uncertainty in runoff prediction and the value of data: An application of the GLUE approach
    • Freer, J., K. Beven, and B. Ambroise (1996), Bayesian estimation of uncertainty in runoff prediction and the value of data: An application of the GLUE approach, Water Resources Research, 32(7), 2161-2173.
    • (1996) Water Resources Research , vol.32 , Issue.7 , pp. 2161-2173
    • Freer, J.1    Beven, K.2    Ambroise, B.3
  • 25
    • 0027009397 scopus 로고
    • Improved techniques in regression-based streamflow volume forecasting
    • Garen, D.C. (1992), Improved techniques in regression-based streamflow volume forecasting. Journal of Water Resources Planning and Mangement, 118(6), 654-670.
    • (1992) Journal of Water Resources Planning and Mangement , vol.118 , Issue.6 , pp. 654-670
    • Garen, D.C.1
  • 26
    • 4143139874 scopus 로고    scopus 로고
    • Towards the characterization of streamflow simulation uncertainty through multimodel ensembles
    • Georgakakos, K.P., D.-J. Seo, H. Gupta, J. Schaake, and M.B. Butts (2004), Towards the characterization of streamflow simulation uncertainty through multimodel ensembles, Journal of Hydrology, 298(1-4), 222-241.
    • (2004) Journal of Hydrology , vol.298 , Issue.1-4 , pp. 222-241
    • Georgakakos, K.P.1    Seo, D.-J.2    Gupta, H.3    Schaake, J.4    Butts, M.B.5
  • 28
    • 0031922634 scopus 로고    scopus 로고
    • Toward improved calibration of hydrologic models:Multiple and noncommensurable measures of information
    • Gupta, H.V., S. Sorooshian, and P.O. Yapo (1998), Toward improved calibration of hydrologic models:Multiple and noncommensurable measures of information, Water Resources Research, 34(4), 751-763.
    • (1998) Water Resources Research , vol.34 , Issue.4 , pp. 751-763
    • Gupta, H.V.1    Sorooshian, S.2    Yapo, P.O.3
  • 29
    • 49449115848 scopus 로고    scopus 로고
    • Reconciling theory with observations: Elements of a diagnostic approach to model evaluation
    • Gupta, H.V., T. Wagener, and Y. Liu (2008), Reconciling theory with observations: Elements of a diagnostic approach to model evaluation, Hydrological Processes, 22(18), 3802-3813.
    • (2008) Hydrological Processes , vol.22 , Issue.18 , pp. 3802-3813
    • Gupta, H.V.1    Wagener, T.2    Liu, Y.3
  • 30
    • 0035270069 scopus 로고    scopus 로고
    • Interpretation of rank histograms for verifying ensemble forecasts
    • Hamill, T.M, (2001), Interpretation of rank histograms for verifying ensemble forecasts, Monthly Weather Review, 129(3), 550-560.
    • (2001) Monthly Weather Review , vol.129 , Issue.3 , pp. 550-560
    • Hamill, T.M.1
  • 32
    • 33749405835 scopus 로고    scopus 로고
    • Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response
    • Hong, Y., K.-l. Hsu, H. Moradkhani, and S. Sorooshian (2006), Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response, Water Resources Research, 42(8), W08421.
    • (2006) Water Resources Research , vol.42 , Issue.8 , pp. W08421
    • Hong, Y.1    Hsu, K.-L.2    Moradkhani, H.3    Sorooshian, S.4
  • 33
    • 0031399333 scopus 로고    scopus 로고
    • Precipitation estimation from remotely sensed information using artificial neural networks
    • Hsu, K., X. Gao, S. Sorooshian, and H.V. Gupta (1997), Precipitation estimation from remotely sensed information using artificial neural networks, Journal of Applied Meteorology, 36(9), 1176-1190.
    • (1997) Journal of Applied Meteorology , vol.36 , Issue.9 , pp. 1176-1190
    • Hsu, K.1    Gao, X.2    Sorooshian, S.3    Gupta, H.V.4
  • 34
    • 68349099316 scopus 로고    scopus 로고
    • A sequential Bayesian approach for hydrologic model selection and prediction
    • Hsu, K., H. Moradkhani, and S. Sorooshian (2009), A sequential Bayesian approach for hydrologic model selection and prediction, Water Resources Research, 45(12), W00B12.
    • (2009) Water Resources Research , vol.45 , Issue.12 , pp. W00B12
    • Hsu, K.1    Moradkhani, H.2    Sorooshian, S.3
  • 36
    • 79961229131 scopus 로고    scopus 로고
    • Bayesian calibration and uncertainty analysis of hydrological models: A comparison of adaptive Metropolis and sequential Monte Carlo samplers
    • Jeremiah, E., S. Sisson, L. Marshall, R. Mehrotra, and A. Sharma (2011), Bayesian calibration and uncertainty analysis of hydrological models: A comparison of adaptive Metropolis and sequential Monte Carlo samplers, Water Resources Research, 47(7), W07547.
    • (2011) Water Resources Research , vol.47 , Issue.7 , pp. W07547
    • Jeremiah, E.1    Sisson, S.2    Marshall, L.3    Mehrotra, R.4    Sharma, A.5
  • 37
    • 79951975429 scopus 로고    scopus 로고
    • Quantifying uncertainty in urban flooding analysis by combined effect of climate and land use change scenarios
    • Jung, I., H. Chang, and H. Moradkhani (2011), Quantifying uncertainty in urban flooding analysis by combined effect of climate and land use change scenarios, Hydrology and Earth System Science, 15, 617-633.
    • (2011) Hydrology and Earth System Science , vol.15 , pp. 617-633
    • Jung, I.1    Chang, H.2    Moradkhani, H.3
  • 39
    • 33646495330 scopus 로고    scopus 로고
    • Bayesian analysis of input uncertainty in hydrological modeling: 2. Application
    • Kavetski, D., G. Kuczera, and S.W. Franks (2006), Bayesian analysis of input uncertainty in hydrological modeling: 2. Application, Water Resources Research, 42(3), W03408.
    • (2006) Water Resources Research , vol.42 , Issue.3 , pp. W03408
    • Kavetski, D.1    Kuczera, G.2    Franks, S.W.3
  • 40
    • 33750474092 scopus 로고    scopus 로고
    • Towards a Bayesian total error analysis of conceptual rainfall-runoff models: Characterizing model error using storm-dependent parameters
    • Kuczera, G., D. Kavetski, S. Franks, and M. Thyer (2006), Towards a Bayesian total error analysis of conceptual rainfall-runoff models: Characterizing model error using storm-dependent parameters, Journal of Hydrology, 331(1), 161-177.
    • (2006) Journal of Hydrology , vol.331 , Issue.1 , pp. 161-177
    • Kuczera, G.1    Kavetski, D.2    Franks, S.3    Thyer, M.4
  • 41
    • 0032214428 scopus 로고    scopus 로고
    • Monte Carlo assessment of parameter uncertainty in conceptual catchment models: The Metropolis algorithm
    • Kuczera, G. and E. Parent (1998), Monte Carlo assessment of parameter uncertainty in conceptual catchment models: The Metropolis algorithm, Journal of Hydrology, 211(1), 69-85.
    • (1998) Journal of Hydrology , vol.211 , Issue.1 , pp. 69-85
    • Kuczera, G.1    Parent, E.2
  • 42
    • 34248166114 scopus 로고    scopus 로고
    • Verification tools for probabilistic forecasts of continuous hydrological variables
    • Laio, F. and S. Tamea (2007), Verification tools for probabilistic forecasts of continuous hydrological variables, Hydrology and Earth System Sciences, 11, 1267-1277.
    • (2007) Hydrology and Earth System Sciences , vol.11 , pp. 1267-1277
    • Laio, F.1    Tamea, S.2
  • 44
    • 84871397512 scopus 로고    scopus 로고
    • Toward advancing data assimilation in operational hydrologic forecasting and water resources management: Current status, challenges, and emerging opportunities
    • Liu, Y., A.H. Weerts, M. Clark, H.J. Hendricks Franssen, S. Kumar, H. Moradkhani, D.J. Seo et al, (2012), Toward advancing data assimilation in operational hydrologic forecasting and water resources management: Current status, challenges, and emerging opportunities, Hydrology and Earth System Sciences, 16, 3863-3887.
    • (2012) Hydrology and Earth System Sciences , vol.16 , pp. 3863-3887
    • Liu, Y.1    Weerts, A.H.2    Clark, M.3    Hendricks Franssen, H.J.4    Kumar, S.5    Moradkhani, H.6    Seo, D.J.7
  • 45
    • 85054690776 scopus 로고    scopus 로고
    • Towards improved reliability and reduced uncertainty of hydrologic ensemble forecasts using multivariate post-processing
    • Madadgar, S., H. Moradkhani, and D. Garen (2012), Towards improved reliability and reduced uncertainty of hydrologic ensemble forecasts using multivariate post-processing, Hydrological Processes, 15, 1133-1155, DOI: 10.1002/hyp.9562.
    • (2012) Hydrological Processes , vol.15 , pp. 1133-1155
    • Madadgar, S.1    Moradkhani, H.2    Garen, D.3
  • 46
    • 1642295818 scopus 로고    scopus 로고
    • A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling
    • Marshall, L., D. Nott, and A. Sharma (2004), A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling, Water Resources Research, 40(2), W02501.
    • (2004) Water Resources Research , vol.40 , Issue.2 , pp. W02501
    • Marshall, L.1    Nott, D.2    Sharma, A.3
  • 47
    • 79952484879 scopus 로고    scopus 로고
    • Rainfall uncertainty in hydrological modelling: An evaluation of multiplicative error models
    • McMillan, H., B. Jackson, M. Clark, D. Kavetski, and R. Woods (2011), Rainfall uncertainty in hydrological modelling: An evaluation of multiplicative error models, Journal of Hydrology, 400(1-2), 83-94.
    • (2011) Journal of Hydrology , vol.400 , Issue.1-2 , pp. 83-94
    • McMillan, H.1    Jackson, B.2    Clark, M.3    Kavetski, D.4    Woods, R.5
  • 48
    • 79951977683 scopus 로고    scopus 로고
    • Hydraulic parameter estimation by remotely-sensed top soil moisture observations with the particle filter
    • Montzka, C., H. Moradkhani, L. Weihermüller, H.-J.H. Franssen, M. Canty, and H. Vereecken (2011), Hydraulic parameter estimation by remotely-sensed top soil moisture observations with the particle filter, Journal of Hydrology, 399(3-4), 410-421.
    • (2011) Journal of Hydrology , vol.399 , Issue.3-4 , pp. 410-421
    • Montzka, C.1    Moradkhani, H.2    Weihermüller, L.3    Franssen, H.-J.H.4    Canty, M.5    Vereecken, H.6
  • 49
    • 44649147780 scopus 로고    scopus 로고
    • Hydrologic remote sensing and land surface data assimilation
    • Moradkhani, H, (2008), Hydrologic remote sensing and land surface data assimilation, Sensors, 8, 2986-3004, DOI: 10.3390/s8052986.
    • (2008) Sensors , vol.8 , pp. 2986-3004
    • Moradkhani, H.1
  • 50
    • 78649630091 scopus 로고    scopus 로고
    • Impact of climate change on floodplain mapping and hydrologic ecotones
    • Moradkhani, H., R.G. Baird, and S. Wherry (2010), Impact of climate change on floodplain mapping and hydrologic ecotones, Journal of Hydrology, 395, 264-278.
    • (2010) Journal of Hydrology , vol.395 , pp. 264-278
    • Moradkhani, H.1    Baird, R.G.2    Wherry, S.3
  • 51
    • 84871364784 scopus 로고    scopus 로고
    • Evolution of ensemble data assimilation for uncertainty quantification using the particle filter-Markov Chain Monte Carlo Method
    • Moradkhani, H., C.M. DeChant, and S. Sorooshian (2012), Evolution of ensemble data assimilation for uncertainty quantification using the particle filter-Markov Chain Monte Carlo Method, Water Resources Research, 48, W12520, DOI: 10.1029/2012WR012144.
    • (2012) Water Resources Research , vol.48 , pp. W12520
    • Moradkhani, H.1    DeChant, C.M.2    Sorooshian, S.3
  • 52
    • 3142538909 scopus 로고    scopus 로고
    • Improved streamflow forecasting using self-organizing radial basis function artificial neural networks
    • Moradkhani, H., K.L. Hsu, H.V. Gupta, and S. Sorooshian (2004), Improved streamflow forecasting using self-organizing radial basis function artificial neural networks, Journal of Hydrology, 295(1), 246-262.
    • (2004) Journal of Hydrology , vol.295 , Issue.1 , pp. 246-262
    • Moradkhani, H.1    Hsu, K.L.2    Gupta, H.V.3    Sorooshian, S.4
  • 53
    • 20844449766 scopus 로고    scopus 로고
    • Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter
    • Moradkhani, H., K.L. Hsu, H.V. Gupta, and S. Sorooshian (2005b), Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter, Water Resources Research, 41(5), W05012.
    • (2005) Water Resources Research , vol.41 , Issue.5 , pp. W05012
    • Moradkhani, H.1    Hsu, K.L.2    Gupta, H.V.3    Sorooshian, S.4
  • 54
    • 33750609870 scopus 로고    scopus 로고
    • Investigating the impact of remotely sensed precipitation and hydrologic model uncertainties on the ensemble streamflow forecasting
    • Moradkhani, H., K.L. Hsu, Y. Hong, and S. Sorooshian (2006), Investigating the impact of remotely sensed precipitation and hydrologic model uncertainties on the ensemble streamflow forecasting, Geophysical Research Letters, 33(12), L12401.
    • (2006) Geophysical Research Letters , vol.33 , Issue.12 , pp. L12401
    • Moradkhani, H.1    Hsu, K.L.2    Hong, Y.3    Sorooshian, S.4
  • 55
    • 77956807997 scopus 로고    scopus 로고
    • Long-lead water supply forecast using large-scale climate predictors and independent component analysis
    • Moradkhani, H. and M. Meier (2010), Long-lead water supply forecast using large-scale climate predictors and independent component analysis, Journal of Hydrologic Engineering, 15, 744-762.
    • (2010) Journal of Hydrologic Engineering , vol.15 , pp. 744-762
    • Moradkhani, H.1    Meier, M.2
  • 56
    • 79960049687 scopus 로고    scopus 로고
    • Probabilistic assessment of the satellite rainfall retrieval error translation to hydrologic response
    • Water Science and Technology Library, Springer, New York
    • Moradkhani, H. and T. Meskele (2009), Probabilistic assessment of the satellite rainfall retrieval error translation to hydrologic response, in Satellite Applications for Surface Hydrology, Water Science and Technology Library, Springer, New York, DOI: 10.1007/978-90-481-2915-7, pp. 229-242.
    • (2009) Satellite Applications for Surface Hydrology , pp. 229-242
    • Moradkhani, H.1    Meskele, T.2
  • 58
    • 11944268965 scopus 로고    scopus 로고
    • Dual state and parameter estimation of hydrological models using ensemble Kalman filter
    • Moradkhani, H., S. Sorooshian, H.V. Gupta, and P.R. Houser (2005a), Dual state and parameter estimation of hydrological models using ensemble Kalman filter, Advances in Water Resources, 28(2), 135-147.
    • (2005) Advances in Water Resources , vol.28 , Issue.2 , pp. 135-147
    • Moradkhani, H.1    Sorooshian, S.2    Gupta, H.V.3    Houser, P.R.4
  • 59
    • 60349083109 scopus 로고    scopus 로고
    • Uncertainties on mean areal precipitation: Assessment and impact on streamflow simulations
    • Moulin, L., E. Gaume, and C. Obled (2009), Uncertainties on mean areal precipitation: Assessment and impact on streamflow simulations, Hydrology and Earth System Sciences, 13, 99-114.
    • (2009) Hydrology and Earth System Sciences , vol.13 , pp. 99-114
    • Moulin, L.1    Gaume, E.2    Obled, C.3
  • 61
    • 80051577111 scopus 로고    scopus 로고
    • Assessing the uncertainties of hydrologic model selection in climate change impact studies
    • Najafi, M.R., H. Moradkhani, and I. Jung (2011b), Assessing the uncertainties of hydrologic model selection in climate change impact studies, Hydrologic Processes, 25(18), 2814-2826.
    • (2011) Hydrologic Processes , vol.25 , Issue.18 , pp. 2814-2826
    • Najafi, M.R.1    Moradkhani, H.2    Jung, I.3
  • 62
    • 84861210595 scopus 로고    scopus 로고
    • Ensemble streamflow prediction: Climate signal weighting vs. climate forecast system reanalysis
    • Najafi, M.R., H. Moradkhani, and T. Piechota (2012), Ensemble streamflow prediction: Climate signal weighting vs. climate forecast system reanalysis, Journal of Hydrology, 442-443, 105-116, http:// dx.doi.org/10.1016/j.jhydrol.2012.04.003
    • (2012) Journal of Hydrology , vol.442-443 , pp. 105-116
    • Najafi, M.R.1    Moradkhani, H.2    Piechota, T.3
  • 63
    • 79961099571 scopus 로고    scopus 로고
    • Statistical downscaling of precipitation using machine learning with optimal predictor selection
    • Najafi, M.R., H. Moradkhani, and S. Wherry (2011a), Statistical downscaling of precipitation using machine learning with optimal predictor selection, Journal of Hydrologic Engineering, 16(8), 650-664.
    • (2011) Journal of Hydrologic Engineering , vol.16 , Issue.8 , pp. 650-664
    • Najafi, M.R.1    Moradkhani, H.2    Wherry, S.3
  • 64
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models part I: A discussion of principles
    • Nash, J.E. and J.V. Sutcliffe (1970), River flow forecasting through conceptual models part I: A discussion of principles, Journal of Hydrology, 10(3), 282-290.
    • (1970) Journal of Hydrology , vol.10 , Issue.3 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 65
    • 84858823339 scopus 로고    scopus 로고
    • Toward reduction of model uncertainty:Integration of Bayesian model averaging and data assimilation
    • Parrish, M.A., H. Moradkhani, and C.M. DeChant (2012), Toward reduction of model uncertainty:Integration of Bayesian model averaging and data assimilation, Water Resources Research, 48(3), W03519, DOI: 10.1029/2011WR011116.
    • (2012) Water Resources Research , vol.48 , Issue.3 , pp. W03519
    • Parrish, M.A.1    Moradkhani, H.2    DeChant, C.M.3
  • 67
    • 0036322061 scopus 로고    scopus 로고
    • Hydrologic data assimilation with the ensemble Kalman filter
    • Reichle, R.H., D.B. McLaughlin, and D. Entekhabi (2002), Hydrologic data assimilation with the ensemble Kalman filter, Monthly Weather Review, 130(1), 103-114.
    • (2002) Monthly Weather Review , vol.130 , Issue.1 , pp. 103-114
    • Reichle, R.H.1    McLaughlin, D.B.2    Entekhabi, D.3
  • 68
    • 77950177246 scopus 로고    scopus 로고
    • Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors
    • Renard, B., D. Kavetski, G. Kuczera, M. Thyer, and S.W. Franks (2010), Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors, Water Resources Research, 46(5), W05521.
    • (2010) Water Resources Research , vol.46 , Issue.5 , pp. W05521
    • Renard, B.1    Kavetski, D.2    Kuczera, G.3    Thyer, M.4    Franks, S.W.5
  • 69
    • 81755176146 scopus 로고    scopus 로고
    • Toward a reliable decomposition of predictive uncertainty in hydrological modeling: Characterizing rainfall errors using conditional simulation
    • Renard, B., D. Kavetski, E. Leblois, M. Thyer, G. Kuczera, and S.W. Franks (2011), Toward a reliable decomposition of predictive uncertainty in hydrological modeling: Characterizing rainfall errors using conditional simulation, Water Resources Research, 47(11), W11516.
    • (2011) Water Resources Research , vol.47 , Issue.11 , pp. W11516
    • Renard, B.1    Kavetski, D.2    Leblois, E.3    Thyer, M.4    Kuczera, G.5    Franks, S.W.6
  • 70
    • 59649124252 scopus 로고    scopus 로고
    • Conceptual model uncertainty in groundwater modeling:Combining generalized likelihood uncertainty estimation and Bayesian model averaging
    • Rojas, R., L. Feyen, and A. Dassargues (2008), Conceptual model uncertainty in groundwater modeling:Combining generalized likelihood uncertainty estimation and Bayesian model averaging, Water Resources Research, 44(12), W12418.
    • (2008) Water Resources Research , vol.44 , Issue.12 , pp. W12418
    • Rojas, R.1    Feyen, L.2    Dassargues, A.3
  • 71
    • 70249132985 scopus 로고    scopus 로고
    • Assessing parameter, precipitation, and predictive uncertainty in a distributed hydrological model using sequential data assimilation with the particle filter
    • Salamon, P. and L. Feyen (2009), Assessing parameter, precipitation, and predictive uncertainty in a distributed hydrological model using sequential data assimilation with the particle filter, Journal of Hydrology, 376(3), 428-442.
    • (2009) Journal of Hydrology , vol.376 , Issue.3 , pp. 428-442
    • Salamon, P.1    Feyen, L.2
  • 72
    • 34249782862 scopus 로고    scopus 로고
    • Watershed calibration using multistart local optimization and evolutionary optimization with radial basis function approximation
    • Shoemaker, C.A., G.R. Rommel, and R.C. Fleming (2007), Watershed calibration using multistart local optimization and evolutionary optimization with radial basis function approximation, Hydrological Sciences Journal, 52(3), 450-465.
    • (2007) Hydrological Sciences Journal , vol.52 , Issue.3 , pp. 450-465
    • Shoemaker, C.A.1    Rommel, G.R.2    Fleming, R.C.3
  • 73
    • 68949104874 scopus 로고    scopus 로고
    • Bayesian methods in hydrologic modeling: A study of recent advancements in Markov chain Monte Carlo techniques
    • Smith, T.J. and L.A. Marshall (2008), Bayesian methods in hydrologic modeling: A study of recent advancements in Markov chain Monte Carlo techniques, Water Resources Research, 44, W00B05.
    • (2008) Water Resources Research , vol.44 , pp. W00B05
    • Smith, T.J.1    Marshall, L.A.2
  • 74
    • 0019227508 scopus 로고
    • Stochastic parameter estimation procedures for hydrologic rainfall- runoff models: Correlated and heteroscedastic error cases
    • Sorooshian, S. and J.A. Dracup (1980), Stochastic parameter estimation procedures for hydrologic rainfall- runoff models: Correlated and heteroscedastic error cases, Water Resources Research, 16(2), 430-442.
    • (1980) Water Resources Research , vol.16 , Issue.2 , pp. 430-442
    • Sorooshian, S.1    Dracup, J.A.2
  • 75
    • 0034794967 scopus 로고    scopus 로고
    • Bayesian recursive parameter estimation for hydrologic models
    • Thiemann, M., M. Trosset, H. Gupta, and S. Sorooshian (2001), Bayesian recursive parameter estimation for hydrologic models, Water Resources Research, 37(10), 2521-2535.
    • (2001) Water Resources Research , vol.37 , Issue.10 , pp. 2521-2535
    • Thiemann, M.1    Trosset, M.2    Gupta, H.3    Sorooshian, S.4
  • 76
    • 69849096009 scopus 로고    scopus 로고
    • Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: A case study using Bayesian total error analysis
    • Thyer, M., B. Renard, D. Kavetski, G. Kuczera, S.W. Franks, and S. Srikanthan (2009), Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: A case study using Bayesian total error analysis, Water Resources Research, 45(12), W00B14.
    • (2009) Water Resources Research , vol.45 , Issue.12 , pp. W00B14
    • Thyer, M.1    Renard, B.2    Kavetski, D.3    Kuczera, G.4    Franks, S.W.5    Srikanthan, S.6
  • 79
    • 1542442237 scopus 로고    scopus 로고
    • Effective and efficient algorithm for multiobjective optimization of hydrologic models
    • Vrugt, J.A., H.V. Gupta, L.A. Bastidas, W. Bouten, and S. Sorooshian (2003), Effective and efficient algorithm for multiobjective optimization of hydrologic models, Water Resources Research, 39(8), 1214.
    • (2003) Water Resources Research , vol.39 , Issue.8 , pp. 1214
    • Vrugt, J.A.1    Gupta, H.V.2    Bastidas, L.A.3    Bouten, W.4    Sorooshian, S.5
  • 80
    • 33746200035 scopus 로고    scopus 로고
    • Real-time data assimilation for operational ensemble streamflow forecasting
    • Vrugt, J.A., H.V. Gupta, B. Nualláin, and W. Bouten (2006), Real-time data assimilation for operational ensemble streamflow forecasting, Journal of Hydrometeorology, 7(3), 548-565.
    • (2006) Journal of Hydrometeorology , vol.7 , Issue.3 , pp. 548-565
    • Vrugt, J.A.1    Gupta, H.V.2    Nualláin, B.3    Bouten, W.4
  • 81
    • 33847624077 scopus 로고    scopus 로고
    • Treatment of uncertainty using ensemble methods: Comparison of sequential data assimilation and Bayesian model averaging
    • Vrugt, J.A. and B.A. Robinson (2007), Treatment of uncertainty using ensemble methods: Comparison of sequential data assimilation and Bayesian model averaging, Water Resources Research, 43(1), W01411.
    • (2007) Water Resources Research , vol.43 , Issue.1 , pp. W01411
    • Vrugt, J.A.1    Robinson, B.A.2
  • 82
    • 57049099445 scopus 로고    scopus 로고
    • Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation
    • Vrugt, J.A., C.J.F. Ter Braak, M.P. Clark, J.M. Hyman, and B.A. Robinson (2008), Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation, Water Resources Research, 44(12), W00B09.
    • (2008) Water Resources Research , vol.44 , Issue.12 , pp. W00B09
    • Vrugt, J.A.1    Ter Braak, C.J.F.2    Clark, M.P.3    Hyman, J.M.4    Robinson, B.A.5
  • 83
    • 26444447973 scopus 로고    scopus 로고
    • Evaluation of catchment models
    • Wagener, T, (2003), Evaluation of catchment models, Hydrological Processes, 17(16), 3375-3378.
    • (2003) Hydrological Processes , vol.17 , Issue.16 , pp. 3375-3378
    • Wagener, T.1
  • 84
    • 34547147903 scopus 로고    scopus 로고
    • Modeling multivariable hydrological series: Principal component analysis or independent component analysis?
    • Westra, S.P., C. Brown, U. Lall, and A. Sharma (2007), Modeling multivariable hydrological series: Principal component analysis or independent component analysis? Water Resources Research, 43(6), W06429.
    • (2007) Water Resources Research , vol.43 , Issue.6 , pp. W06429
    • Westra, S.P.1    Brown, C.2    Lall, U.3    Sharma, A.4
  • 85
    • 53749095590 scopus 로고    scopus 로고
    • An ensemble approach for attribution of hydrologic prediction uncertainty
    • Wood, A.W. and D.P. Lettenmaier (2008), An ensemble approach for attribution of hydrologic prediction uncertainty, Geophysical Research Letters, 35, L14401.
    • (2008) Geophysical Research Letters , vol.35 , pp. L14401
    • Wood, A.W.1    Lettenmaier, D.P.2
  • 86
    • 84875031706 scopus 로고    scopus 로고
    • Development of a seasonal climate and streamflow forecasting testbed for the Colorado River Basin
    • Fort Worth, TX
    • Wood, A.W. and K. Werner (2011), Development of a seasonal climate and streamflow forecasting testbed for the Colorado River Basin, Proceedings of the 36th Climate Diagnostic and Prediction Workshop, Fort Worth, TX, pp. 101-105.
    • (2011) Proceedings of the 36th Climate Diagnostic and Prediction Workshop , pp. 101-105
    • Wood, A.W.1    Werner, K.2
  • 87
    • 0032579570 scopus 로고    scopus 로고
    • Multi-objective global optimization for hydrologic models
    • Yapo, P.O., H.V. Gupta, and S. Sorooshian (1998), Multi-objective global optimization for hydrologic models, Journal of Hydrology, 204(1), 83-97.
    • (1998) Journal of Hydrology , vol.204 , Issue.1 , pp. 83-97
    • Yapo, P.O.1    Gupta, H.V.2    Sorooshian, S.3
  • 88
    • 61749101619 scopus 로고    scopus 로고
    • Evaluation of global optimization algorithms for parameter calibration of a computationally intensive hydrologic model
    • Zhang, X., R. Srinivasan, K. Zhao, and M.V. Liew (2009), Evaluation of global optimization algorithms for parameter calibration of a computationally intensive hydrologic model, Hydrological Processes, 23(3), 430-441.
    • (2009) Hydrological Processes , vol.23 , Issue.3 , pp. 430-441
    • Zhang, X.1    Srinivasan, R.2    Zhao, K.3    Liew, M.V.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.