메뉴 건너뛰기




Volumn 164, Issue , 2016, Pages 387-399

A comparative study of three model-based algorithms for estimating state-of-charge of lithium-ion batteries under a new combined dynamic loading profile

Author keywords

Degradation; Extended Kalman filter; Lithium ion batteries; Particle filter; State of charge; Unscented Kalman filter

Indexed keywords

ALGORITHMS; CHARGING (BATTERIES); DEGRADATION; DYNAMIC LOADS; ELECTRIC BATTERIES; EXTENDED KALMAN FILTERS; KALMAN FILTERS; LITHIUM ALLOYS; LITHIUM COMPOUNDS; LITHIUM-ION BATTERIES; MONTE CARLO METHODS; NONLINEAR FILTERING; SECONDARY BATTERIES; STRESS ANALYSIS; UNCERTAINTY ANALYSIS;

EID: 84951095944     PISSN: 03062619     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apenergy.2015.11.072     Document Type: Article
Times cited : (182)

References (59)
  • 1
    • 84869862215 scopus 로고    scopus 로고
    • A review on the key issues for lithium-ion battery management in electric vehicles
    • Lu L., Han X., Li J., Hua J., Ouyang M. A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 2013, 226:272-288.
    • (2013) J Power Sources , vol.226 , pp. 272-288
    • Lu, L.1    Han, X.2    Li, J.3    Hua, J.4    Ouyang, M.5
  • 2
    • 82755187714 scopus 로고    scopus 로고
    • Battery management systems in electric and hybrid vehicles
    • Xing Y., Ma E.W., Tsui K.L., Pecht M. Battery management systems in electric and hybrid vehicles. Energies 2011, 4:1840-1857.
    • (2011) Energies , vol.4 , pp. 1840-1857
    • Xing, Y.1    Ma, E.W.2    Tsui, K.L.3    Pecht, M.4
  • 4
    • 84881433282 scopus 로고    scopus 로고
    • Adaptive gain sliding mode observer for state of charge estimation based on combined battery equivalent circuit model in electric vehicles
    • Chen X.P., Shen W.X., Cao Z.W., Kapoor A., Hijazin I. Adaptive gain sliding mode observer for state of charge estimation based on combined battery equivalent circuit model in electric vehicles. C Ind Elect Appl 2013, 601-606.
    • (2013) C Ind Elect Appl , pp. 601-606
    • Chen, X.P.1    Shen, W.X.2    Cao, Z.W.3    Kapoor, A.4    Hijazin, I.5
  • 5
    • 84881527299 scopus 로고    scopus 로고
    • State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures
    • Xing Y., He W., Pecht M., Tsui K.L. State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures. Appl Energy 2014, 113:106-115.
    • (2014) Appl Energy , vol.113 , pp. 106-115
    • Xing, Y.1    He, W.2    Pecht, M.3    Tsui, K.L.4
  • 6
    • 63449140302 scopus 로고    scopus 로고
    • Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries
    • Ng K.S., Moo C.-S., Chen Y.-P., Hsieh Y.-C. Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries. Appl Energy 2009, 86:1506-1511.
    • (2009) Appl Energy , vol.86 , pp. 1506-1511
    • Ng, K.S.1    Moo, C.-S.2    Chen, Y.-P.3    Hsieh, Y.-C.4
  • 7
    • 0034143096 scopus 로고    scopus 로고
    • Design and implementation of a battery charger with a state-of-charge estimator
    • Liu T.-H., Chen D.-F., Fang C.-C. Design and implementation of a battery charger with a state-of-charge estimator. Int J Electron 2000, 87:211-226.
    • (2000) Int J Electron , vol.87 , pp. 211-226
    • Liu, T.-H.1    Chen, D.-F.2    Fang, C.-C.3
  • 8
    • 0026940198 scopus 로고
    • A battery state-of-charge indicator for electric wheelchairs
    • Aylor J.H., Thieme A., Johnso B. A battery state-of-charge indicator for electric wheelchairs. Ind Electron IEEE Trans 1992, 39:398-409.
    • (1992) Ind Electron IEEE Trans , vol.39 , pp. 398-409
    • Aylor, J.H.1    Thieme, A.2    Johnso, B.3
  • 9
    • 84862754817 scopus 로고    scopus 로고
    • Robustness analysis of State-of-Charge estimation methods for two types of Li-ion batteries
    • Hu X., Li S., Peng H., Sun F. Robustness analysis of State-of-Charge estimation methods for two types of Li-ion batteries. J Power Sources 2012, 217:209-219.
    • (2012) J Power Sources , vol.217 , pp. 209-219
    • Hu, X.1    Li, S.2    Peng, H.3    Sun, F.4
  • 10
    • 84894335531 scopus 로고    scopus 로고
    • A new neural network model for the state-of-charge estimation in the battery degradation process
    • Kang L., Zhao X., Ma J. A new neural network model for the state-of-charge estimation in the battery degradation process. Appl Energy 2014, 121:20-27.
    • (2014) Appl Energy , vol.121 , pp. 20-27
    • Kang, L.1    Zhao, X.2    Ma, J.3
  • 11
    • 0032664638 scopus 로고    scopus 로고
    • Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology
    • Salkind A.J., Fennie C., Singh P., Atwater T., Reisner D.E. Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology. J Power Sources 1999, 80:293-300.
    • (1999) J Power Sources , vol.80 , pp. 293-300
    • Salkind, A.J.1    Fennie, C.2    Singh, P.3    Atwater, T.4    Reisner, D.E.5
  • 14
    • 84905675285 scopus 로고    scopus 로고
    • nonlinear observer designs for state-of-charge estimation of lithium-ion batteries
    • Dey S, Ayalew B. nonlinear observer designs for state-of-charge estimation of lithium-ion batteries. In: American control conference; 2014. p. 248-53.
    • (2014) American control conference , pp. 248-253
    • Dey, S.1    Ayalew, B.2
  • 16
    • 33947581222 scopus 로고    scopus 로고
    • The novel state of charge estimation method for lithium battery using sliding mode observer
    • Kim I.-S. The novel state of charge estimation method for lithium battery using sliding mode observer. J Power Sources 2006, 163:584-590.
    • (2006) J Power Sources , vol.163 , pp. 584-590
    • Kim, I.-S.1
  • 17
    • 84886860165 scopus 로고    scopus 로고
    • Second-order discrete-time sliding mode observer for state of charge determination based on a dynamic resistance Li-ion battery model
    • Kim D., Koo K., Jeong J.J., Goh T., Kim S.W. Second-order discrete-time sliding mode observer for state of charge determination based on a dynamic resistance Li-ion battery model. Energies 2013, 6:5538-5551.
    • (2013) Energies , vol.6 , pp. 5538-5551
    • Kim, D.1    Koo, K.2    Jeong, J.J.3    Goh, T.4    Kim, S.W.5
  • 18
    • 80054799986 scopus 로고    scopus 로고
    • Estimation of battery state of charge with H-infinity observer: applied to a robot for inspecting power transmission lines
    • Zhang F., Liu G.J., Fang L.J., Wang H.G. Estimation of battery state of charge with H-infinity observer: applied to a robot for inspecting power transmission lines. IEEE Trans Ind Electron 2012, 59:1086-1095.
    • (2012) IEEE Trans Ind Electron , vol.59 , pp. 1086-1095
    • Zhang, F.1    Liu, G.J.2    Fang, L.J.3    Wang, H.G.4
  • 19
    • 84907322640 scopus 로고    scopus 로고
    • Effects analysis of model parameters uncertainties on battery SOC estimation using H-infinity observer
    • Li X, Jiang JC, Zhang CP, Zhang WG, Sun BX. Effects analysis of model parameters uncertainties on battery SOC estimation using H-infinity observer. In: Proc Ieee int symp; 2014. p. 1647-53.
    • (2014) Proc Ieee int symp , pp. 1647-1653
    • Li, X.1    Jiang, J.C.2    Zhang, C.P.3    Zhang, W.G.4    Sun, B.X.5
  • 21
    • 84903637330 scopus 로고    scopus 로고
    • The state of charge estimation of lithium-ion batteries based on a proportional-integral observer
    • Xu J., Mi C.C., Cao B.G., Deng J.J., Chen Z., Li S.Q. The state of charge estimation of lithium-ion batteries based on a proportional-integral observer. Ieee T Veh Technol 2014, 63:1614-1621.
    • (2014) Ieee T Veh Technol , vol.63 , pp. 1614-1621
    • Xu, J.1    Mi, C.C.2    Cao, B.G.3    Deng, J.J.4    Chen, Z.5    Li, S.Q.6
  • 22
    • 84943415888 scopus 로고    scopus 로고
    • Lyapunov-based adaptive state of charge and state of health estimation for lithium-ion batteries
    • Chaoui H., Golbon N., Hmouz I., Souissi R., Tahar S. Lyapunov-based adaptive state of charge and state of health estimation for lithium-ion batteries. IEEE Trans Industr Electron 2014, 1.
    • (2014) IEEE Trans Industr Electron , pp. 1
    • Chaoui, H.1    Golbon, N.2    Hmouz, I.3    Souissi, R.4    Tahar, S.5
  • 23
    • 3142702292 scopus 로고    scopus 로고
    • Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 1. Background
    • Plett G.L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 1. Background. J Power Sources 2004, 2004(134):252-261.
    • (2004) J Power Sources , vol.2004 , Issue.134 , pp. 252-261
    • Plett, G.L.1
  • 24
    • 3142752164 scopus 로고    scopus 로고
    • Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2. Modeling and identification
    • Plett G.L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2. Modeling and identification. J Power Sources 2004, 134:262-276.
    • (2004) J Power Sources , vol.134 , pp. 262-276
    • Plett, G.L.1
  • 25
    • 3142674441 scopus 로고    scopus 로고
    • Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation
    • Plett G.L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation. J Power Sources 2004, 134:277-292.
    • (2004) J Power Sources , vol.134 , pp. 277-292
    • Plett, G.L.1
  • 26
    • 33750957461 scopus 로고    scopus 로고
    • Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 1: introduction and state estimation
    • Plett G.L. Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 1: introduction and state estimation. J Power Sources 2006, 161:1356-1368.
    • (2006) J Power Sources , vol.161 , pp. 1356-1368
    • Plett, G.L.1
  • 27
    • 33750931202 scopus 로고    scopus 로고
    • Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2: simultaneous state and parameter estimation
    • Plett G.L. Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2: simultaneous state and parameter estimation. J Power Sources 2006, 161:1369-1384.
    • (2006) J Power Sources , vol.161 , pp. 1369-1384
    • Plett, G.L.1
  • 28
    • 56049085091 scopus 로고    scopus 로고
    • State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge
    • Lee S., Kim J., Lee J., Cho B.H. State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge. J Power Sources 2008, 185:1367-1373.
    • (2008) J Power Sources , vol.185 , pp. 1367-1373
    • Lee, S.1    Kim, J.2    Lee, J.3    Cho, B.H.4
  • 29
    • 84879110066 scopus 로고    scopus 로고
    • Evaluation on state of charge estimation of batteries with adaptive extended Kalman filter by experiment approach
    • Xiong R., He H.W., Sun F.C., Zhao K. Evaluation on state of charge estimation of batteries with adaptive extended Kalman filter by experiment approach. Ieee T Veh Technol 2013, 62:108-117.
    • (2013) Ieee T Veh Technol , vol.62 , pp. 108-117
    • Xiong, R.1    He, H.W.2    Sun, F.C.3    Zhao, K.4
  • 30
    • 84892658667 scopus 로고    scopus 로고
    • Improved adaptive state-of-charge estimation for batteries using a multi-model approach
    • Fang H., Zhao X., Wang Y., Sahinoglu Z., Wada T., Hara S., et al. Improved adaptive state-of-charge estimation for batteries using a multi-model approach. J Power Sources 2014, 254:258-267.
    • (2014) J Power Sources , vol.254 , pp. 258-267
    • Fang, H.1    Zhao, X.2    Wang, Y.3    Sahinoglu, Z.4    Wada, T.5    Hara, S.6
  • 31
    • 79955665844 scopus 로고    scopus 로고
    • Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles
    • Sun F.C., Hu X.S., Zou Y., Li S.G. Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles. Energy 2011, 36:3531-3540.
    • (2011) Energy , vol.36 , pp. 3531-3540
    • Sun, F.C.1    Hu, X.S.2    Zou, Y.3    Li, S.G.4
  • 32
    • 79955665844 scopus 로고    scopus 로고
    • Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles
    • Sun F., Hu X., Zou Y., Li S. Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles. Energy 2011, 36:3531-3540.
    • (2011) Energy , vol.36 , pp. 3531-3540
    • Sun, F.1    Hu, X.2    Zou, Y.3    Li, S.4
  • 33
    • 84892636144 scopus 로고    scopus 로고
    • Lithium-ion battery state of charge estimation based on square-root unscented Kalman filter
    • Gholizade-Narm H., Charkhgard M. Lithium-ion battery state of charge estimation based on square-root unscented Kalman filter. IET Power Electron 2013, 6:1833-1841.
    • (2013) IET Power Electron , vol.6 , pp. 1833-1841
    • Gholizade-Narm, H.1    Charkhgard, M.2
  • 34
    • 84928406745 scopus 로고    scopus 로고
    • State-of-charge estimation of lithium-ion battery using square root spherical unscented Kalman filter (Sqrt-UKFST) in nanosatellite
    • Aung H., Soon Low K., Ting Goh S. State-of-charge estimation of lithium-ion battery using square root spherical unscented Kalman filter (Sqrt-UKFST) in nanosatellite. Power Electron, IEEE Trans 2015, 30:4774-4783.
    • (2015) Power Electron, IEEE Trans , vol.30 , pp. 4774-4783
    • Aung, H.1    Soon Low, K.2    Ting Goh, S.3
  • 35
    • 84920651407 scopus 로고    scopus 로고
    • 4 power battery based on strong tracking sigma point Kalman filter
    • 4 power battery based on strong tracking sigma point Kalman filter. J Power Sources 2015, 279:439-449.
    • (2015) J Power Sources , vol.279 , pp. 439-449
    • Li, D.1    Ouyang, J.2    Li, H.3    Wan, J.4
  • 36
    • 84933567699 scopus 로고    scopus 로고
    • State of charge estimation of lithium-ion batteries using an adaptive cubature Kalman filter
    • Xia B., Wang H., Tian Y., Wang M., Sun W., Xu Z. State of charge estimation of lithium-ion batteries using an adaptive cubature Kalman filter. Energies 2015, 8:5916-5936.
    • (2015) Energies , vol.8 , pp. 5916-5936
    • Xia, B.1    Wang, H.2    Tian, Y.3    Wang, M.4    Sun, W.5    Xu, Z.6
  • 38
    • 84921354910 scopus 로고    scopus 로고
    • Comparison study on two model-based adaptive algorithms for SOC estimation of lithium-ion batteries in electric vehicles
    • Tian Y., Xia B., Wang M., Sun W., Xu Z. Comparison study on two model-based adaptive algorithms for SOC estimation of lithium-ion batteries in electric vehicles. Energies 2014, 7:8446-8464.
    • (2014) Energies , vol.7 , pp. 8446-8464
    • Tian, Y.1    Xia, B.2    Wang, M.3    Sun, W.4    Xu, Z.5
  • 39
    • 84874584676 scopus 로고    scopus 로고
    • Comparison between two model-based algorithms for Li-ion battery SOC estimation in electric vehicles
    • Hu X., Sun F., Zou Y. Comparison between two model-based algorithms for Li-ion battery SOC estimation in electric vehicles. Simul Model Pract Theory 2013, 34:1-11.
    • (2013) Simul Model Pract Theory , vol.34 , pp. 1-11
    • Hu, X.1    Sun, F.2    Zou, Y.3
  • 40
    • 84886855338 scopus 로고    scopus 로고
    • Comparison study on the battery SoC estimation with EKF and UKF algorithms
    • He H., Qin H., Sun X., Shui Y. Comparison study on the battery SoC estimation with EKF and UKF algorithms. Energies 2013, 6:5088-5100.
    • (2013) Energies , vol.6 , pp. 5088-5100
    • He, H.1    Qin, H.2    Sun, X.3    Shui, Y.4
  • 42
    • 84862947774 scopus 로고    scopus 로고
    • Gao M, Liu Y, He Z. Battery state of charge online estimation based on particle filter. In: Image and signal processing (CISP), 2011 4th International Congress on. IEEE; 2011. p. 2233-6.
    • Gao M, Liu Y, He Z. Battery state of charge online estimation based on particle filter. In: Image and signal processing (CISP), 2011 4th International Congress on. IEEE; 2011. p. 2233-6.
  • 43
    • 84883410881 scopus 로고    scopus 로고
    • Particle filter for state of charge and state of health estimation for lithium-iron phosphate batteries
    • Schwunk S., Armbruster N., Straub S., Kehl J., Vetter M. Particle filter for state of charge and state of health estimation for lithium-iron phosphate batteries. J Power Sources 2013, 239:705-710.
    • (2013) J Power Sources , vol.239 , pp. 705-710
    • Schwunk, S.1    Armbruster, N.2    Straub, S.3    Kehl, J.4    Vetter, M.5
  • 45
    • 84869866120 scopus 로고    scopus 로고
    • A new model for State-of-Charge (SOC) estimation for high-power Li-ion batteries
    • He Y., Liu X., Zhang C., Chen Z. A new model for State-of-Charge (SOC) estimation for high-power Li-ion batteries. Appl Energy 2013, 101:808-814.
    • (2013) Appl Energy , vol.101 , pp. 808-814
    • He, Y.1    Liu, X.2    Zhang, C.3    Chen, Z.4
  • 46
    • 84897827336 scopus 로고    scopus 로고
    • A novel temperature-compensated model for power Li-ion batteries with dual-particle-filter state of charge estimation
    • Liu X., Chen Z., Zhang C., Wu J. A novel temperature-compensated model for power Li-ion batteries with dual-particle-filter state of charge estimation. Appl Energy 2014, 123:263-272.
    • (2014) Appl Energy , vol.123 , pp. 263-272
    • Liu, X.1    Chen, Z.2    Zhang, C.3    Wu, J.4
  • 47
    • 79960376423 scopus 로고    scopus 로고
    • Efficient batteries for transportation applications
    • SAE technical paper
    • Alamgir M, Sastry AM. Efficient batteries for transportation applications. SAE technical paper; 2008.
    • (2008)
    • Alamgir, M.1    Sastry, A.M.2
  • 48
    • 84879839833 scopus 로고    scopus 로고
    • Remaining useful life prediction of lithium-ion battery with unscented particle filter technique
    • Miao Q., Xie L., Cui H., Liang W., Pecht M. Remaining useful life prediction of lithium-ion battery with unscented particle filter technique. Microelectron Reliab 2013, 53:805-810.
    • (2013) Microelectron Reliab , vol.53 , pp. 805-810
    • Miao, Q.1    Xie, L.2    Cui, H.3    Liang, W.4    Pecht, M.5
  • 49
    • 84876568884 scopus 로고    scopus 로고
    • Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model
    • Wang D., Miao Q., Pecht M. Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model. J Power Sources 2013, 239:253-264.
    • (2013) J Power Sources , vol.239 , pp. 253-264
    • Wang, D.1    Miao, Q.2    Pecht, M.3
  • 50
    • 84891485246 scopus 로고    scopus 로고
    • Enhanced sample entropy-based health management of Li-ion battery for electrified vehicles
    • Hu X., Li S.E., Jia Z., Egardt B. Enhanced sample entropy-based health management of Li-ion battery for electrified vehicles. Energy 2014, 64:953-960.
    • (2014) Energy , vol.64 , pp. 953-960
    • Hu, X.1    Li, S.E.2    Jia, Z.3    Egardt, B.4
  • 51
    • 33747764243 scopus 로고    scopus 로고
    • USABC electric vehicle battery test procedures manual
    • Washington, DC, USA: United States Department of Energy
    • Hunt G. USABC electric vehicle battery test procedures manual. Washington, DC, USA: United States Department of Energy; 1996.
    • (1996)
    • Hunt, G.1
  • 53
    • 84905163890 scopus 로고    scopus 로고
    • Extended kalman filter tutorial
    • Disponible:
    • Terejanu GA. Extended kalman filter tutorial. Disponible: 2008. http://users%20ices%20utexas%20edu/~terejanu/files/tutorialEKFpdf.
    • (2008)
    • Terejanu, G.A.1
  • 54
    • 0036475447 scopus 로고    scopus 로고
    • A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
    • Arulampalam M.S., Maskell S., Gordon N., Clapp T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. Ieee T Signal Process 2002, 50:174-188.
    • (2002) Ieee T Signal Process , vol.50 , pp. 174-188
    • Arulampalam, M.S.1    Maskell, S.2    Gordon, N.3    Clapp, T.4
  • 56
    • 0036475447 scopus 로고    scopus 로고
    • A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
    • Arulampalam M.S., Maskell S., Gordon N., Clapp T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. Signal Process, IEEE Trans 2002, 50:174-188.
    • (2002) Signal Process, IEEE Trans , vol.50 , pp. 174-188
    • Arulampalam, M.S.1    Maskell, S.2    Gordon, N.3    Clapp, T.4
  • 57
    • 0008802221 scopus 로고    scopus 로고
    • An introduction to sequential Monte Carlo methods
    • Springer-Verlag, New York, A. Doucet, J.F.G. de Freitas, N.J. Gordon (Eds.)
    • Doucet A. An introduction to sequential Monte Carlo methods. Sequential Monte Carlo methods in practice 2001, Springer-Verlag, New York. A. Doucet, J.F.G. de Freitas, N.J. Gordon (Eds.).
    • (2001) Sequential Monte Carlo methods in practice
    • Doucet, A.1
  • 59
    • 48049091162 scopus 로고    scopus 로고
    • On resampling algorithms for particle filters. In: Nonlinear Statistical Signal Processing Workshop, 2006 IEEE: IEEE
    • Hol JD, Schon TB, Gustafsson F. On resampling algorithms for particle filters. In: Nonlinear Statistical Signal Processing Workshop, 2006 IEEE: IEEE; 2006. p. 79-82.
    • (2006) , pp. 79-82
    • Hol, J.D.1    Schon, T.B.2    Gustafsson, F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.