메뉴 건너뛰기




Volumn 80, Issue 392, 1985, Pages 974-984

Efficient sequential designs with binary data

Author keywords

Logit; Optimal design; Quantal response curve; Robbins Monro stochastic approximation; Sensitivity experiments; Spearman K rber estimator; Up and down method

Indexed keywords


EID: 84950861150     PISSN: 01621459     EISSN: 1537274X     Source Type: Journal    
DOI: 10.1080/01621459.1985.10478213     Document Type: Article
Times cited : (162)

References (31)
  • 1
    • 21844459291 scopus 로고
    • Transformations of Observations in Stochastic Approximation
    • Abdelhamid, S. N. (1973), “Transformations of Observations in Stochastic Approximation,” Annals of Statistics, 1, 1158–1174.
    • (1973) Annals of Statistics , vol.1 , pp. 1158-1174
    • Abdelhamid, S.N.1
  • 2
    • 21844439826 scopus 로고
    • On Optimal Estimation Methods Using Stochastic Approximation Procedures
    • Anbar, D. (1973), “On Optimal Estimation Methods Using Stochastic Approximation Procedures,” Annals of Statistics, 1, 1175–1184.
    • (1973) Annals of Statistics , vol.1 , pp. 1175-1184
    • Anbar, D.1
  • 5
    • 0014176911 scopus 로고
    • Discrimination Between Alternative Binary Response Models
    • Chambers, E. A., and Cox, D. R. (1967), “Discrimination Between Alternative Binary Response Models,” Biometrika, 54, 573–578.
    • (1967) Biometrika , vol.54 , pp. 573-578
    • Chambers, E.A.1    Cox, D.R.2
  • 6
    • 0000792517 scopus 로고
    • On a Stochastic Approximation Method
    • Chung, K. L. (1954), “On a Stochastic Approximation Method,” Annals of Mathematical Statistics, 25, 463–483.
    • (1954) Annals of Mathematical Statistics , vol.25 , pp. 463-483
    • Chung, K.L.1
  • 7
    • 0009281196 scopus 로고
    • The Robbins–Monro Method for Estimating the Median Lethal Dose
    • Ser. B
    • Cochran, W. G., and Davis, M. (1965), “The Robbins–Monro Method for Estimating the Median Lethal Dose, “Journal of the Royal Statistical Society, Ser. B, 27, 28–44.
    • (1965) Journal of the Royal Statistical Society , vol.27 , pp. 28-44
    • Cochran, W.G.1    Davis, M.2
  • 9
    • 0008590031 scopus 로고
    • Comparison of Sequential Bioassays in Small Samples
    • Ser. B
    • Davis, M. (1971), “Comparison of Sequential Bioassays in Small Samples,” Journal of the Royal Statistical Society, Ser. B, 33, 78–87.
    • (1971) Journal of the Royal Statistical Society , vol.33 , pp. 78-87
    • Davis, M.1
  • 11
    • 0001451318 scopus 로고
    • A Sharper Form of the Borel–Cantelli Lemma and the Strong Law
    • Dubins, L. E., and Freedman, D. A. (1965), “A Sharper Form of the Borel–Cantelli Lemma and the Strong Law,” Annals of Mathematical Statistics, 36, 800–807.
    • (1965) Annals of Mathematical Statistics , vol.36 , pp. 800-807
    • Dubins, L.E.1    Freedman, D.A.2
  • 12
    • 68949134067 scopus 로고
    • Asymptotically Efficient Stochastic Approximation: The RM Case
    • Fabian, V. (1973), “Asymptotically Efficient Stochastic Approximation: The RM Case,” Annals of Statistics, 1, 486–495.
    • (1973) Annals of Statistics , vol.1 , pp. 486-495
    • Fabian, V.1
  • 13
    • 84909713915 scopus 로고
    • A Locally Asymptotic Minimax Optimality of an Adaptive Robbins-Monro Stochastic Approximation Procedure
    • eds. U. Herkenrath, D. Kalin, and W. Vogel, New York: Springer-Verlag
    • —— (1983), “A Locally Asymptotic Minimax Optimality of an Adaptive Robbins-Monro Stochastic Approximation Procedure,” in Mathematical Learning Models—Theory and Algorithms, eds. U. Herkenrath, D. Kalin, and W. Vogel, New York: Springer-Verlag, pp. 43–49.
    • (1983) Mathematical Learning Models—Theory and Algorithms , pp. 43-49
    • Fabian, V.1
  • 15
    • 0006369398 scopus 로고
    • Optimal Bayesian Sequential Estimation of the Median Effective Dose
    • Freeman, P. R. (1970), “Optimal Bayesian Sequential Estimation of the Median Effective Dose,” Biometrika, 57, 79–89.
    • (1970) Biometrika , vol.57 , pp. 79-89
    • Freeman, P.R.1
  • 17
    • 0000878355 scopus 로고
    • Adaptive Design and Stochastic Approximation
    • Lai, T. L., and Robbins, H. (1979), “Adaptive Design and Stochastic Approximation,” Annals of Statistics, 7, 1196–1221.
    • (1979) Annals of Statistics , vol.7 , pp. 1196-1221
    • Lai, T.L.1    Robbins, H.2
  • 19
    • 84910708084 scopus 로고
    • Technical Summary Report 2416, University of Wisconsin-Madison, Mathematics Research Center
    • Leonard, T. (1982), “An Inferential Approach to the Bioassay Design Problem,” Technical Summary Report 2416, University of Wisconsin-Madison, Mathematics Research Center.
    • (1982) An Inferential Approach to the Bioassay Design Problem
    • Leonard, T.1
  • 20
    • 84892764556 scopus 로고
    • Tailored Testing, An Application of Stochastic Approximation
    • Lord, F. M. (1971), “Tailored Testing, An Application of Stochastic Approximation,” Journal of the American Statistical Association, 66, 707–711.
    • (1971) Journal of the American Statistical Association , vol.66 , pp. 707-711
    • Lord, F.M.1
  • 21
    • 0018854315 scopus 로고
    • Robust Estimators for Quantal Bioassay
    • Miller, R. G., and Halpern, J. W. (1980), “Robust Estimators for Quantal Bioassay,” Biometrika, 67, 103–110.
    • (1980) Biometrika , vol.67 , pp. 103-110
    • Miller, R.G.1    Halpern, J.W.2
  • 22
    • 33746237342 scopus 로고
    • A Bayesian Sequential Procedure for Quantal Response in the Context of Adaptive Mental Testing
    • Owen, R. J. (1975), “A Bayesian Sequential Procedure for Quantal Response in the Context of Adaptive Mental Testing,” Journal of the American Statistical Association, 70, 351–356.
    • (1975) Journal of the American Statistical Association , vol.70 , pp. 351-356
    • Owen, R.J.1
  • 24
    • 0002686402 scopus 로고
    • A Convergence Theorem for Nonnegative Almost Sure Supermartingale and Some Applications
    • ed. J. N. Rustagi, New York: Academic Press
    • Robbins, H., and Siegmund, D. (1971), “A Convergence Theorem for Nonnegative Almost Sure Supermartingale and Some Applications, “in Optimization Methods in Statistics, ed. J. N. Rustagi, New York: Academic Press, pp. 233–257.
    • (1971) Optimization Methods in Statistics , pp. 233-257
    • Robbins, H.1    Siegmund, D.2
  • 26
    • 0000431134 scopus 로고
    • Asymptotic Distribution of Stochastic Approximation Procedures
    • Sacks, J. (1958), “Asymptotic Distribution of Stochastic Approximation Procedures,” Annals of Mathematical Statistics, 29, 373–405.
    • (1958) Annals of Mathematical Statistics , vol.29 , pp. 373-405
    • Sacks, J.1
  • 27
    • 0000950512 scopus 로고
    • On the Existence ofMaximum Likelihood Estimators for the Binomial Response Model
    • Ser. B
    • Silvapulle, M. J. (1981), “On the Existence ofMaximum Likelihood Estimators for the Binomial Response Model,” Journal of the Royal Statistical Society, Ser. B, 43, 310–313.
    • (1981) Journal of the Royal Statistical Society , vol.43 , pp. 310-313
    • Silvapulle, M.J.1
  • 29
    • 0001810396 scopus 로고
    • Sequential Estimation of Quantal Response Curves
    • with discussion, Ser. B
    • Wetherill, G. B. (1963), “Sequential Estimation of Quantal Response Curves” (with discussion), Journal of the Royal Statistical Society, Ser. B, 25, 1–48.
    • (1963) Journal of the Royal Statistical Society , vol.25 , pp. 1-48
    • Wetherill, G.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.