메뉴 건너뛰기




Volumn 188, Issue 1, 2016, Pages 1-27

GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran

Author keywords

Boosted regression tree; Classification and regression tree; GIS; Iran; Random forest; Spring potential mapping

Indexed keywords

ARTIFICIAL INTELLIGENCE; DECISION TREES; FORESTRY; GEOGRAPHIC INFORMATION SYSTEMS; GROUNDWATER; LAND USE; LEARNING ALGORITHMS; LEARNING SYSTEMS; LITHOLOGY; LOCATION; MAPPING; REGRESSION ANALYSIS; SLOPE STABILITY; WATER RESOURCES;

EID: 84950296761     PISSN: 01676369     EISSN: 15732959     Source Type: Journal    
DOI: 10.1007/s10661-015-5049-6     Document Type: Article
Times cited : (539)

References (96)
  • 2
    • 77349088324 scopus 로고    scopus 로고
    • Comparison and ranking of different modeling techniques for prediction of site index in Mediterranean mountain forests
    • Aertsen, W., Kint, V., Van Orshoven, J., Özkan, K., & Muys, B. (2010). Comparison and ranking of different modeling techniques for prediction of site index in Mediterranean mountain forests. Ecological Modelling, 221, 1119–1130.
    • (2010) Ecological Modelling , vol.221 , pp. 1119-1130
    • Aertsen, W.1    Kint, V.2    Van Orshoven, J.3    Özkan, K.4    Muys, B.5
  • 3
    • 79953120983 scopus 로고    scopus 로고
    • Evaluation of modelling techniques for forest site productivity prediction in contrasting ecoregions using stochastic multicriteria acceptability analysis (SMAA)
    • Aertsen, W., Kint, V., Van Orshoven, J., & Muys, B. (2011). Evaluation of modelling techniques for forest site productivity prediction in contrasting ecoregions using stochastic multicriteria acceptability analysis (SMAA). Environmental Modelling and Software, 26(7), 929–937.
    • (2011) Environmental Modelling and Software , vol.26 , Issue.7 , pp. 929-937
    • Aertsen, W.1    Kint, V.2    Van Orshoven, J.3    Muys, B.4
  • 4
    • 82455187958 scopus 로고    scopus 로고
    • An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm
    • Akgun, A., Sezer, E. A., Nefeslioglu, H. A., Gokceoglu, C., & Pradhan, B. (2012). An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm. Computer and Geoscience, 38(1), 23–34.
    • (2012) Computer and Geoscience , vol.38 , Issue.1 , pp. 23-34
    • Akgun, A.1    Sezer, E.A.2    Nefeslioglu, H.A.3    Gokceoglu, C.4    Pradhan, B.5
  • 5
    • 34347244931 scopus 로고    scopus 로고
    • Development and implementation of a Bayesian-based aquifer vulnerability assessment in Florida
    • COI: 1:CAS:528:DC%2BD2sXms1Wgu7Y%3D
    • Arthur, J. D., Wood, H. A. R., Baker, A. E., Cichon, J. R., & Raines, G. L. (2007). Development and implementation of a Bayesian-based aquifer vulnerability assessment in Florida. Natural Resources Research, 16(2), 93–107.
    • (2007) Natural Resources Research , vol.16 , Issue.2 , pp. 93-107
    • Arthur, J.D.1    Wood, H.A.R.2    Baker, A.E.3    Cichon, J.R.4    Raines, G.L.5
  • 7
    • 0031182317 scopus 로고    scopus 로고
    • TOPMODEL: a critique
    • Beven, K. (1997). TOPMODEL: a critique. Hydrological Process, 11, 1069–1085.
    • (1997) Hydrological Process , vol.11 , pp. 1069-1085
    • Beven, K.1
  • 8
    • 0035393058 scopus 로고    scopus 로고
    • A dynamic TOPMODEL
    • Beven, K., & Freer, J. (2001). A dynamic TOPMODEL. Hydrological Process, 15(10), 1993–2011.
    • (2001) Hydrological Process , vol.15 , Issue.10 , pp. 1993-2011
    • Beven, K.1    Freer, J.2
  • 9
    • 84957417334 scopus 로고    scopus 로고
    • Geostatistics-based groundwater-level monitoring network design and its application to the Upper Floridan aquifer, USA
    • Bhat, S., Motz, L. H., Pathak, C., & Kuebler, L. (2015). Geostatistics-based groundwater-level monitoring network design and its application to the Upper Floridan aquifer, USA. Environmental Monitoring and Assessment, 187(1), 1–15.
    • (2015) Environmental Monitoring and Assessment , vol.187 , Issue.1 , pp. 1-15
    • Bhat, S.1    Motz, L.H.2    Pathak, C.3    Kuebler, L.4
  • 11
    • 35748965059 scopus 로고    scopus 로고
    • Use of terrain variables for mapping gully erosion susceptibility in Lebanon
    • Bou Kheir, R., Wilson, J., & Deng, Y. (2007). Use of terrain variables for mapping gully erosion susceptibility in Lebanon. Earth Surface Processes and Landforms, 32(12), 1770–1782.
    • (2007) Earth Surface Processes and Landforms , vol.32 , Issue.12 , pp. 1770-1782
    • Bou Kheir, R.1    Wilson, J.2    Deng, Y.3
  • 12
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996). Bagging predictors. Machine Learning, 26(2), 123–140.
    • (1996) Machine Learning , vol.26 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 13
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 15
    • 77953094229 scopus 로고    scopus 로고
    • Groundwater recharges study in arid region: an approach using GIS techniques and numerical modeling
    • Chenini, I., & Ben Mammou, A. (2010). Groundwater recharges study in arid region: an approach using GIS techniques and numerical modeling. Computer and Geosciences, 36(6), 801–817.
    • (2010) Computer and Geosciences , vol.36 , Issue.6 , pp. 801-817
    • Chenini, I.1    Ben Mammou, A.2
  • 16
    • 77952240112 scopus 로고    scopus 로고
    • Groundwater recharge zone mapping using GIS-based multi-criteria analysis: a case study in Central Tunisia (Maknassy Basin)
    • Chenini, I., Ben Mammou, A., & May, M. E. (2010). Groundwater recharge zone mapping using GIS-based multi-criteria analysis: a case study in Central Tunisia (Maknassy Basin). Water Resources Management, 24(5), 921–939.
    • (2010) Water Resources Management , vol.24 , Issue.5 , pp. 921-939
    • Chenini, I.1    Ben Mammou, A.2    May, M.E.3
  • 17
    • 57049149109 scopus 로고    scopus 로고
    • Integrated remote sensing and GIS-based approach for assessing groundwater potential in West Medinipur district, West Bengal, India
    • Chowdhury, A., Jha, M. K., Chowdary, V. M., & Mal, B. C. (2009). Integrated remote sensing and GIS-based approach for assessing groundwater potential in West Medinipur district, West Bengal, India. International Journal of Remote Sensing, 30, 231–250.
    • (2009) International Journal of Remote Sensing , vol.30 , pp. 231-250
    • Chowdhury, A.1    Jha, M.K.2    Chowdary, V.M.3    Mal, B.C.4
  • 18
    • 84863311295 scopus 로고    scopus 로고
    • Interpolations of groundwater table elevation in dissected uplands
    • COI: 1:CAS:528:DC%2BC38XhtFSgu77F
    • Chung, J. W., & Rogers, J. D. (2012). Interpolations of groundwater table elevation in dissected uplands. Groundwater, 50(4), 598–607.
    • (2012) Groundwater , vol.50 , Issue.4 , pp. 598-607
    • Chung, J.W.1    Rogers, J.D.2
  • 19
    • 85070252770 scopus 로고    scopus 로고
    • Predictive models of benthic macro-invertebrate metrics
    • Clapcott, J., Goodwin, E., & Snelder, T. (2013). Predictive models of benthic macro-invertebrate metrics. Cawthron Report No. 2301. p. 35
    • (2013) Cawthron Report , vol.2301 , pp. 35
    • Clapcott, J.1    Goodwin, E.2    Snelder, T.3
  • 20
    • 68249104119 scopus 로고    scopus 로고
    • Weight of evidence and artificial neural networks for potential groundwater spring mapping: an application to the Mt. Modino area (Northern Apennines, Italy)
    • Corsini, A., Cervi, F., & Ronchetti, F. (2009). Weight of evidence and artificial neural networks for potential groundwater spring mapping: an application to the Mt. Modino area (Northern Apennines, Italy). Geomorphology, 111, 79–87.
    • (2009) Geomorphology , vol.111 , pp. 79-87
    • Corsini, A.1    Cervi, F.2    Ronchetti, F.3
  • 22
    • 84889029279 scopus 로고    scopus 로고
    • Groundwater spring potential mapping using bivariate statistical model and GIS in the Taleghan watershed, Iran
    • Davoodi Moghaddam, D., Rezaei, M., Pourghasemi, H. R., Pourtaghie, Z. S., & Pradhan, B. (2015). Groundwater spring potential mapping using bivariate statistical model and GIS in the Taleghan watershed, Iran. Arabian Journal of Geosciences, 8(2), 913–929.
    • (2015) Arabian Journal of Geosciences , vol.8 , Issue.2 , pp. 913-929
    • Davoodi Moghaddam, D.1    Rezaei, M.2    Pourghasemi, H.R.3    Pourtaghie, Z.S.4    Pradhan, B.5
  • 23
    • 33947611002 scopus 로고    scopus 로고
    • Knowledge Discovery in the Environmental Sciences: Visual and Automatic Data Mining for Radon Problems
    • Demsar, U. (2007). Knowledge Discovery in the Environmental Sciences: Visual and Automatic Data Mining for Radon Problems. Groundwater Transactions in GIS, 11(2), 255–281.
    • (2007) Groundwater Transactions in GIS , vol.11 , Issue.2 , pp. 255-281
    • Demsar, U.1
  • 24
    • 69149106528 scopus 로고    scopus 로고
    • A case study using SVM, NN and logistic regression in a GIS to predict wells contaminated with Nitrate-N
    • COI: 1:CAS:528:DC%2BD1MXhtVSisbjK
    • Dixon, B. (2009). A case study using SVM, NN and logistic regression in a GIS to predict wells contaminated with Nitrate-N. Hydrogeology Journal, 17, 1507–1520.
    • (2009) Hydrogeology Journal , vol.17 , pp. 1507-1520
    • Dixon, B.1
  • 26
    • 44849118698 scopus 로고    scopus 로고
    • A working guide to boosted regression trees
    • COI: 1:STN:280:DC%2BD1cvgsFOqsQ%3D%3D
    • Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology, 77, 802–813.
    • (2008) Journal of Animal Ecology , vol.77 , pp. 802-813
    • Elith, J.1    Leathwick, J.R.2    Hastie, T.3
  • 27
    • 0038702163 scopus 로고    scopus 로고
    • Multiple additive regression trees with application in epidemiology
    • Friedman, J. H., & Meulman, J. J. (2003). Multiple additive regression trees with application in epidemiology. Statistics in Medicine, 22, 1365–1381.
    • (2003) Statistics in Medicine , vol.22 , pp. 1365-1381
    • Friedman, J.H.1    Meulman, J.J.2
  • 29
    • 34247482308 scopus 로고    scopus 로고
    • Superficial and subterranean soil erosion in Tabasco, tropical Mexico: development of a decision tree modeling approach
    • Geissen, V., Kampichler, C., López-de Llergo-Juarez, J. J., & Galindo-Acántara, A. (2007). Superficial and subterranean soil erosion in Tabasco, tropical Mexico: development of a decision tree modeling approach. Geoderma, 139, 277–287.
    • (2007) Geoderma , vol.139 , pp. 277-287
    • Geissen, V.1    Kampichler, C.2    López-de Llergo-Juarez, J.J.3    Galindo-Acántara, A.4
  • 30
    • 84950302307 scopus 로고    scopus 로고
    • Geology Survey of Iran (GSI). (1997). Geology map of the Chaharmahal-e-Bakhtiari Province. Accessed September 2000
    • Geology Survey of Iran (GSI). (1997). Geology map of the Chaharmahal-e-Bakhtiari Province. http://www.gsi.ir/Main/Lang_en/index.html. Accessed September 2000
  • 31
    • 33947722665 scopus 로고    scopus 로고
    • Application of GIS techniques to determine areas most suitable for artificial groundwater recharge in a coastal aquifer in southern Iran
    • Ghayoumian, J., Mohseni, S. M., Feiznia, S., Nourib, B., & Malekian, A. (2007). Application of GIS techniques to determine areas most suitable for artificial groundwater recharge in a coastal aquifer in southern Iran. Journal of Asian Earth Sciences, 30, 364–374.
    • (2007) Journal of Asian Earth Sciences , vol.30 , pp. 364-374
    • Ghayoumian, J.1    Mohseni, S.M.2    Feiznia, S.3    Nourib, B.4    Malekian, A.5
  • 32
    • 24344493920 scopus 로고    scopus 로고
    • Predicting species distribution: offering more than simple habitat models
    • Guisan, A., & Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8, 993–1009.
    • (2005) Ecology Letters , vol.8 , pp. 993-1009
    • Guisan, A.1    Thuiller, W.2
  • 33
    • 77951200860 scopus 로고    scopus 로고
    • Integrating GIS and remote sensing for identification of groundwater potential zones in the hilly terrain of Pavagarh, Gujarat, India
    • Gupta, M., & Srivastava, P. K. (2010). Integrating GIS and remote sensing for identification of groundwater potential zones in the hilly terrain of Pavagarh, Gujarat, India. Water International, 35, 233–245.
    • (2010) Water International , vol.35 , pp. 233-245
    • Gupta, M.1    Srivastava, P.K.2
  • 35
    • 70449516490 scopus 로고    scopus 로고
    • Using and comparing two nonparametric methods (CART and MARS) to model the potential distribution of gullies
    • Gutiérrez, Á. G., Schnabel, S., & Lavado Contador, J. F. (2009b). Using and comparing two nonparametric methods (CART and MARS) to model the potential distribution of gullies. Ecologicl Modelling, 220(24), 3630–3637.
    • (2009) Ecologicl Modelling , vol.220 , Issue.24 , pp. 3630-3637
    • Gutiérrez, Á.G.1    Schnabel, S.2    Lavado Contador, J.F.3
  • 36
    • 0030069896 scopus 로고    scopus 로고
    • Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
    • Harrell, F. E., Lee, K. L., & Mark, D. B. (1996). Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Statistics in Medicine, 15, 361–387.
    • (1996) Statistics in Medicine , vol.15 , pp. 361-387
    • Harrell, F.E.1    Lee, K.L.2    Mark, D.B.3
  • 39
    • 84950267619 scopus 로고    scopus 로고
    • International Institute for Aerospace Survey and Earth Sciences (ITC). (2005). ILWIS 3.3 user guide
    • International Institute for Aerospace Survey and Earth Sciences (ITC). (2005). ILWIS 3.3 user guide, www.itc.nl
  • 40
    • 0346037329 scopus 로고    scopus 로고
    • Role of remote sensing and GIS techniques for generation of groundwater prospect zones towards rural development–an approach
    • Jaiswal, R. K., Mukherjee, S., Krishnamurthy, J., & Saxena, R. (2003). Role of remote sensing and GIS techniques for generation of groundwater prospect zones towards rural development–an approach. International Journal of Remote Sensing, 24(5), 993–1008.
    • (2003) International Journal of Remote Sensing , vol.24 , Issue.5 , pp. 993-1008
    • Jaiswal, R.K.1    Mukherjee, S.2    Krishnamurthy, J.3    Saxena, R.4
  • 41
    • 0028195613 scopus 로고
    • UNCSAM: a tool for automating sensitivity and uncertainty analysis
    • Janssen, P. H. M., Heuberger, P. S. C., & Sanders, R. (1994). UNCSAM: a tool for automating sensitivity and uncertainty analysis. Environmental Software, 9(1), 1–11.
    • (1994) Environmental Software , vol.9 , Issue.1 , pp. 1-11
    • Janssen, P.H.M.1    Heuberger, P.S.C.2    Sanders, R.3
  • 42
    • 33846409029 scopus 로고    scopus 로고
    • Groundwater management and development by integrated remote sensing and geographic information systems: prospects and constraints
    • Jha, M. K., Chowdhury, A., Chowdary, V. M., & Peiffer, S. (2007). Groundwater management and development by integrated remote sensing and geographic information systems: prospects and constraints. Water Resources Management, 21, 427–467.
    • (2007) Water Resources Management , vol.21 , pp. 427-467
    • Jha, M.K.1    Chowdhury, A.2    Chowdary, V.M.3    Peiffer, S.4
  • 43
    • 84870653357 scopus 로고    scopus 로고
    • Regional groundwater productivity potential mapping using a geographic information system (GIS) based artificial neural network model
    • Lee, S., Song, K. Y., Kim, Y., & Park, I. (2012). Regional groundwater productivity potential mapping using a geographic information system (GIS) based artificial neural network model. Hydrogeology Journal, 20(8), 1511–1527.
    • (2012) Hydrogeology Journal , vol.20 , Issue.8 , pp. 1511-1527
    • Lee, S.1    Song, K.Y.2    Kim, Y.3    Park, I.4
  • 45
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomForest
    • Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R News, 2(3), 18–22.
    • (2002) R News , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 47
    • 84895074994 scopus 로고    scopus 로고
    • Application of probabilistic-based frequency ratio model in groundwater potential mapping using remote sensing data and GIS. Arabian Journal of Geosciences
    • Manap, M.A., Nampak, H., Pradhan, B., Lee, S., Soleiman, W.N.A., & Ramli, M.F. (2012). Application of probabilistic-based frequency ratio model in groundwater potential mapping using remote sensing data and GIS. Arabian Journal of Geosciences. doi:10.1007/s12517-012-0795-z
    • (2012)
    • Manap, M.A.1    Nampak, H.2    Pradhan, B.3    Lee, S.4    Soleiman, W.N.A.5    Ramli, M.F.6
  • 48
    • 84964300670 scopus 로고    scopus 로고
    • Comparison of the data-driven random forests model and a knowledge-driven method for mineral prospectively mapping: a case study for gold deposits around the Huritz Group and Nueltin Suite
    • Canada, Natural Resources Research
    • McKay, G., & Harris, J. R. (2015). Comparison of the data-driven random forests model and a knowledge-driven method for mineral prospectively mapping: a case study for gold deposits around the Huritz Group and Nueltin Suite, Nunavut, Canada. Natural Resources Research. doi:10.1007/s11053-015-9274-z
    • (2015) Nunavut
    • McKay, G.1    Harris, J.R.2
  • 49
    • 84869211931 scopus 로고    scopus 로고
    • Landslide susceptibility mapping at Golestan Province, Iran: A comparison between frequency ratio, Dempster–Shafer, and weights of-evidence models
    • Mohammady, M., Pourghasemi, H. R., & Pradhan, B. (2012). Landslide susceptibility mapping at Golestan Province, Iran: A comparison between frequency ratio, Dempster–Shafer, and weights of-evidence models. Journal of Asian Earth Sciences, 61, 221–236.
    • (2012) Journal of Asian Earth Sciences , vol.61 , pp. 221-236
    • Mohammady, M.1    Pourghasemi, H.R.2    Pradhan, B.3
  • 50
    • 33750041371 scopus 로고    scopus 로고
    • Predicting tree species presence and basal area in Utah: a comparison of stochastic gradient boosting, generalized additive models, and tree-based methods
    • Moisen, G. G., Freeman, E. A., Blackard, J. A., Frescino, T. S., Zimmermann, N. E., & Edwards, T. C. (2006). Predicting tree species presence and basal area in Utah: a comparison of stochastic gradient boosting, generalized additive models, and tree-based methods. Ecological Modelling, 199, 176–187.3.
    • (2006) Ecological Modelling , vol.199 , pp. 176-187
    • Moisen, G.G.1    Freeman, E.A.2    Blackard, J.A.3    Frescino, T.S.4    Zimmermann, N.E.5    Edwards, T.C.6
  • 52
    • 0022766432 scopus 로고
    • Sediment transport capacity of sheet and rill flow: application of unit stream power theory
    • Moore, I. D., & Burch, G. J. (1986). Sediment transport capacity of sheet and rill flow: application of unit stream power theory. Water Resources Research, 22(8), 1350–1360.
    • (1986) Water Resources Research , vol.22 , Issue.8 , pp. 1350-1360
    • Moore, I.D.1    Burch, G.J.2
  • 53
    • 0026359098 scopus 로고
    • Digital terrain modelling: a review of hydrological, geomorphological, and biological applications
    • Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrological Process, 4, 3–30.
    • (1991) Hydrological Process , vol.4 , pp. 3-30
    • Moore, I.D.1    Grayson, R.B.2    Ladson, A.R.3
  • 54
    • 70449433265 scopus 로고    scopus 로고
    • Multi-criteria decision evaluation in groundwater zones identification in Moyale-Teltelesubbasin, South Ethiopia
    • Murthy, K. S. R., & Mamo, A. G. (2009). Multi-criteria decision evaluation in groundwater zones identification in Moyale-Teltelesubbasin, South Ethiopia. International Journal of Remote Sensing, 30, 2729–2740.
    • (2009) International Journal of Remote Sensing , vol.30 , pp. 2729-2740
    • Murthy, K.S.R.1    Mamo, A.G.2
  • 55
    • 85027950488 scopus 로고    scopus 로고
    • A comparative assessment between three machine learning models and their performance comparison by bivariate and multivariate statistical methods in groundwater potential mapping. Water Resources Management
    • Naghibi, S. A., & Pourghasemi, H. R. (2015). A comparative assessment between three machine learning models and their performance comparison by bivariate and multivariate statistical methods in groundwater potential mapping. Water Resources Management. doi:10.1007/s11269-015-1114-8
    • (2015)
    • Naghibi, S.A.1    Pourghasemi, H.R.2
  • 56
    • 84893189858 scopus 로고    scopus 로고
    • Groundwater qanat potential mapping using frequency ratio and Shannon’s entropy models in the Moghan watershed, Iran
    • Naghibi, S. A., Pourghasemi, H. R., Pourtaghi, Z. S., & Rezaei, A. (2015). Groundwater qanat potential mapping using frequency ratio and Shannon’s entropy models in the Moghan watershed, Iran. Earth Sci Informatics, 8(1), 171–186.
    • (2015) Earth Sci Informatics , vol.8 , Issue.1 , pp. 171-186
    • Naghibi, S.A.1    Pourghasemi, H.R.2    Pourtaghi, Z.S.3    Rezaei, A.4
  • 57
    • 70449726439 scopus 로고    scopus 로고
    • A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses
    • Nandi, A., & Shakoor, A. (2009). A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Engineering Geology, 110, 11–20.
    • (2009) Engineering Geology , vol.110 , pp. 11-20
    • Nandi, A.1    Shakoor, A.2
  • 59
    • 82255174148 scopus 로고    scopus 로고
    • Letter to the Editor: On the stability and ranking of predictors from random forest variable importance measures predictors from random forest variable importance measures
    • Nicodemus, K. K. (2011). Letter to the Editor: On the stability and ranking of predictors from random forest variable importance measures predictors from random forest variable importance measures. Brieffings in Bioinformatics, 12, 369–373.
    • (2011) Brieffings in Bioinformatics , vol.12 , pp. 369-373
    • Nicodemus, K.K.1
  • 60
    • 77955843196 scopus 로고    scopus 로고
    • Assessment of ground subsidence using GIS and the weights-of-evidence model
    • Oh, H. J., & Lee, S. (2010). Assessment of ground subsidence using GIS and the weights-of-evidence model. Engineering Geology, 115(1–2), 36–48.
    • (2010) Engineering Geology , vol.115 , Issue.1-2 , pp. 36-48
    • Oh, H.J.1    Lee, S.2
  • 61
    • 79952009171 scopus 로고    scopus 로고
    • GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea
    • Oh, H. J., Kim, Y. S., Choi, J. K., Park, E., & Lee, S. (2011). GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. Journal of Hydrology, 399, 158–172.
    • (2011) Journal of Hydrology , vol.399 , pp. 158-172
    • Oh, H.J.1    Kim, Y.S.2    Choi, J.K.3    Park, E.4    Lee, S.5
  • 62
    • 49249102441 scopus 로고    scopus 로고
    • Machine learning without tears: a primer for ecologists
    • Olden, J. D., Lawler, J. J., & Poff, N. L. (2008). Machine learning without tears: a primer for ecologists. The Quarterly Review of Biology, 83(2), 171–193.
    • (2008) The Quarterly Review of Biology , vol.83 , Issue.2 , pp. 171-193
    • Olden, J.D.1    Lawler, J.J.2    Poff, N.L.3
  • 63
    • 84859751452 scopus 로고    scopus 로고
    • Modeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random forest
    • Oliveira, S., Oehler, F., San-Miguel-Ayanz, J., Camia, A., & Pereira, J. M. C. (2012). Modeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random forest. Forest Ecology Management, 275, 117–129.
    • (2012) Forest Ecology Management , vol.275 , pp. 117-129
    • Oliveira, S.1    Oehler, F.2    San-Miguel-Ayanz, J.3    Camia, A.4    Pereira, J.M.C.5
  • 64
    • 81555202390 scopus 로고    scopus 로고
    • GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison
    • Ozdemir, A. (2011a). GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison. Journal of Hydrology, 411, 290–308.
    • (2011) Journal of Hydrology , vol.411 , pp. 290-308
    • Ozdemir, A.1
  • 65
    • 79960012626 scopus 로고    scopus 로고
    • Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey)
    • Ozdemir, A. (2011b). Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey). Journal of Hydrology, 405, 123–136.
    • (2011) Journal of Hydrology , vol.405 , pp. 123-136
    • Ozdemir, A.1
  • 66
    • 84877043160 scopus 로고    scopus 로고
    • A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey
    • Ozdemir, A., & Altural, T. (2013). A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. Journal of Asian Earth Sciences, 64, 180–197.
    • (2013) Journal of Asian Earth Sciences , vol.64 , pp. 180-197
    • Ozdemir, A.1    Altural, T.2
  • 68
  • 69
    • 84862318369 scopus 로고    scopus 로고
    • Landslide susceptibility mapping using index of entropy and conditional probability models in GS: Safarood Basin, Iran
    • Pourghasemi, H. R., Mohammady, M., & Pradhan, B. (2012a). Landslide susceptibility mapping using index of entropy and conditional probability models in GS: Safarood Basin, Iran. Catena, 97, 71–84.
    • (2012) Catena , vol.97 , pp. 71-84
    • Pourghasemi, H.R.1    Mohammady, M.2    Pradhan, B.3
  • 70
    • 84927577697 scopus 로고    scopus 로고
    • Landslide susceptibility mapping using a spatial multi criteria evaluation model at Haraz Watershed, Iran
    • Pradhan B, Buchroithner M, (eds), Springer, Heidelberg, Germany
    • Pourghasemi, H. R., Gokceoglu, C., Pradhan, B., & Deylami Moezzi, K. (2012b). Landslide susceptibility mapping using a spatial multi criteria evaluation model at Haraz Watershed, Iran. In B. Pradhan & M. Buchroithner (Eds.), Terrigenous mass movements (pp. 23–49). Heidelberg, Germany: Springer. doi:10.1007/978-3-642-25495-6-2.
    • (2012) Terrigenous mass movements , pp. 23-49
    • Pourghasemi, H.R.1    Gokceoglu, C.2    Pradhan, B.3    Deylami Moezzi, K.4
  • 71
    • 84899440240 scopus 로고    scopus 로고
    • GIS-based groundwater spring potential assessment and mapping in the Birjand Township, southern Khorasan Province, Iran
    • Pourtaghi, Z. S., & Pourghasemi, H. R. (2014). GIS-based groundwater spring potential assessment and mapping in the Birjand Township, southern Khorasan Province, Iran. Hydrogeology Journal, 22(3), 643–662.
    • (2014) Hydrogeology Journal , vol.22 , Issue.3 , pp. 643-662
    • Pourtaghi, Z.S.1    Pourghasemi, H.R.2
  • 72
    • 33645330972 scopus 로고    scopus 로고
    • Newer classification and regression tree techniques: bagging and random forests for ecological prediction
    • Prasad, A. M., Iverson, L. R., & Liaw, A. (2006). Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems, 9, 181–199.
    • (2006) Ecosystems , vol.9 , pp. 181-199
    • Prasad, A.M.1    Iverson, L.R.2    Liaw, A.3
  • 75
    • 84944916873 scopus 로고    scopus 로고
    • Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: A case study at Mehran Region, Iran
    • Rahmati, O., Pourghasemi, H. R., & Melesse, A. M. (2015). Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: A case study at Mehran Region, Iran. Catena, 137, 360–372. doi:10.1016/j.catena.2015.10.010
    • (2015) Catena , vol.137 , pp. 360-372
    • Rahmati, O.1    Pourghasemi, H.R.2    Melesse, A.M.3
  • 76
    • 84947486566 scopus 로고    scopus 로고
    • Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Science Informatics
    • Razandi, Y., Pourghasemi, H.R., Samani Neisani, N., & Rahmati, O. (2015). Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Science Informatics, doi:10.1007/s12145-015-0220-8
    • (2015)
    • Razandi, Y.1    Pourghasemi, H.R.2    Samani Neisani, N.3    Rahmati, O.4
  • 78
    • 84950268176 scopus 로고    scopus 로고
    • Ridgeway, G. (2006). Generalized Boosted Regression Models. Documentation on the R Package ‘gbm’, version 1.5-7, - pensieri.com/gregr/gbm.shtml
    • Ridgeway, G. (2006). Generalized Boosted Regression Models. Documentation on the R Package ‘gbm’, version 1.5-7, Available at: http://www.i- pensieri.com/gregr/gbm.shtml
  • 79
    • 84893025944 scopus 로고    scopus 로고
    • Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: A case study in an agricultural setting (Southern Spain)
    • Rodriguez-Galiano, V., Mendes, M. P., Jose Garcia-Soldado, M., Chica-Olmo, M., & Ribeiro, L. (2014). Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: A case study in an agricultural setting (Southern Spain). Science of the Total Environment, 476, 189–206.
    • (2014) Science of the Total Environment , vol.476 , pp. 189-206
    • Rodriguez-Galiano, V.1    Mendes, M.P.2    Jose Garcia-Soldado, M.3    Chica-Olmo, M.4    Ribeiro, L.5
  • 80
    • 38349085101 scopus 로고    scopus 로고
    • Landslide susceptibility analysis with a heuristic approach in the Eastern Alps (Vorarlberg, Austria)
    • Ruff, M., & Czurda, K. (2008). Landslide susceptibility analysis with a heuristic approach in the Eastern Alps (Vorarlberg, Austria). Geomorphology, 94, 314–324.
    • (2008) Geomorphology , vol.94 , pp. 314-324
    • Ruff, M.1    Czurda, K.2
  • 81
    • 77952290408 scopus 로고    scopus 로고
    • Delineation of groundwater development potential zones in parts of marginal Ganga Alluvial Plain in South Bihar, Eastern India
    • COI: 1:CAS:528:DC%2BC3cXhtl2mtrbO
    • Saha, D., Dhar, Y. R., & Vittala, S. S. (2010). Delineation of groundwater development potential zones in parts of marginal Ganga Alluvial Plain in South Bihar, Eastern India. Environmental Monitoring and Assessment, 165, 179–191.
    • (2010) Environmental Monitoring and Assessment , vol.165 , pp. 179-191
    • Saha, D.1    Dhar, Y.R.2    Vittala, S.S.3
  • 83
    • 0037806811 scopus 로고    scopus 로고
    • The boosting approach to machine learning: an overview
    • Schapire, R. E. (2003). The boosting approach to machine learning: an overview. Nonlinear Estimation and Classification, 171, 149–171.
    • (2003) Nonlinear Estimation and Classification , vol.171 , pp. 149-171
    • Schapire, R.E.1
  • 84
    • 33747096510 scopus 로고    scopus 로고
    • Groundwater study using remote sensing and geographic information systems (GIS) in central highlands of Eritrea
    • COI: 1:CAS:528:DC%2BD28XnvFKrtL4%3D
    • Solomon, S., & Quiel, F. (2006). Groundwater study using remote sensing and geographic information systems (GIS) in central highlands of Eritrea. Hydrogeology Journal, 14(5), 729–741.
    • (2006) Hydrogeology Journal , vol.14 , Issue.5 , pp. 729-741
    • Solomon, S.1    Quiel, F.2
  • 85
    • 33749831481 scopus 로고    scopus 로고
    • Groundwater assessment through an integrated approach using remote sensing, GIS and resistivity techniques: a case study from a hard rock terrain
    • Srivastava, P. K., & Bhattacharya, A. K. (2006). Groundwater assessment through an integrated approach using remote sensing, GIS and resistivity techniques: a case study from a hard rock terrain. International Journal of Remote Sensing, 27, 4599–4620.
    • (2006) International Journal of Remote Sensing , vol.27 , pp. 4599-4620
    • Srivastava, P.K.1    Bhattacharya, A.K.2
  • 86
    • 48549095457 scopus 로고    scopus 로고
    • Conditional variable importance for random forests, BMC Bioinformatics
    • Strobl, C., Boulesteix, A.L., Kneib, T., Augustin, T., & Zeileis, A. (2008). Conditional variable importance for random forests. BMC Bioinformatics. doi:10.1186/1471-2105-9-307
    • (2008) & Zeileis, A
    • Strobl, C.1    Boulesteix, A.L.2    Kneib, T.3    Augustin, T.4
  • 87
    • 79960743609 scopus 로고    scopus 로고
    • Object-oriented mapping of landslides using random forests
    • Stumpf, A., & Kerle, N. (2011a). Object-oriented mapping of landslides using random forests. Remote Sensing Environment, 115(10), 2564–2577.
    • (2011) Remote Sensing Environment , vol.115 , Issue.10 , pp. 2564-2577
    • Stumpf, A.1    Kerle, N.2
  • 88
    • 79953801638 scopus 로고    scopus 로고
    • Combining Random Forests and object-oriented analysis for landslide mapping from very high resolution imagery
    • Stumpf, A., & Kerle, N. (2011b). Combining Random Forests and object-oriented analysis for landslide mapping from very high resolution imagery. Procedia Environmental Sciences, 3, 123–129.
    • (2011) Procedia Environmental Sciences , vol.3 , pp. 123-129
    • Stumpf, A.1    Kerle, N.2
  • 90
    • 0003814352 scopus 로고    scopus 로고
    • John Wiley and Sons inc., New Jersey
    • Todd, D. K., & Mays, L. W. (2005). Groundwater hydrology (3rd ed., p. 656). New Jersey: John Wiley and Sons inc.
    • (2005) Groundwater hydrology , pp. 656
    • Todd, D.K.1    Mays, L.W.2
  • 92
    • 84958776215 scopus 로고    scopus 로고
    • Integrated water resources analysis at Basin scale: a case study in Greece
    • 5015012
    • Varouchakis, E. (2015). Integrated water resources analysis at Basin scale: a case study in Greece. Journal of Irrigation and Drainage Engineering, 10.1061/(ASCE)IR.1943-4774.0000966, 05015012.
    • (2015) Journal of Irrigation and Drainage Engineering, 10.1061/(ASCE)IR , vol.966 , pp. 1943-4774
    • Varouchakis, E.1
  • 93
    • 84862212238 scopus 로고    scopus 로고
    • How can statistical models help to determine driving factors of landslides?
    • Vorpahl, P., Elsenbeer, H., Märker, M., & Schröder, B. (2012). How can statistical models help to determine driving factors of landslides? Ecological Modelling, 239, 27–39.
    • (2012) Ecological Modelling , vol.239 , pp. 27-39
    • Vorpahl, P.1    Elsenbeer, H.2    Märker, M.3    Schröder, B.4
  • 95
    • 84871146979 scopus 로고    scopus 로고
    • The Application of computational intelligence to landslide susceptibility mapping in Turkey. PhD Thesis
    • Yesilnacar, E.K. (2005). The Application of computational intelligence to landslide susceptibility mapping in Turkey. PhD Thesis. Department of Geomatics the University of Melbourne
    • (2005) Department of Geomatics the University of Melbourne
    • Yesilnacar, E.K.1
  • 96
    • 84868525208 scopus 로고    scopus 로고
    • Evaluating the predictive abilities of community occupancy models using AUC while accounting for imperfect detection
    • Zipkin, E. F., Grant, E. H. C., & Fagan, W. F. (2012). Evaluating the predictive abilities of community occupancy models using AUC while accounting for imperfect detection. Ecological Applications, 22, 1962–1972.
    • (2012) Ecological Applications , vol.22 , pp. 1962-1972
    • Zipkin, E.F.1    Grant, E.H.C.2    Fagan, W.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.