메뉴 건너뛰기




Volumn 2000-January, Issue , 2000, Pages 87-94

Extending topological nexttime logic

Author keywords

[No Author keywords available]

Indexed keywords

TOPOLOGY;

EID: 84949970007     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/TIME.2000.856589     Document Type: Conference Paper
Times cited : (5)

References (16)
  • 1
    • 84949950143 scopus 로고
    • B. F. Chellas
    • Cambridge University Press Cambridge
    • B. F. Chellas. Modal Logic: An Introduction. Cambridge University Press, Cambridge, 1980.
    • (1980) Modal Logic: An Introduction
  • 3
    • 0343242942 scopus 로고    scopus 로고
    • PhD dissertation, Department of Mathematics, Cornell University
    • J. Davoren. Modal Logics for Continuous Dynamics. PhD dissertation, Department of Mathematics, Cornell University, 1998.
    • (1998) Modal Logics for Continuous Dynamics
    • Davoren, J.1
  • 6
    • 0005638369 scopus 로고    scopus 로고
    • Knowledge on treelike spaces
    • K. Georgatos. Knowledge on Treelike Spaces. Studia Logica, 59(2): 271-301, 1997.
    • (1997) Studia Logica , vol.59 , Issue.2 , pp. 271-301
    • Georgatos, K.1
  • 8
    • 0025460546 scopus 로고
    • Knowledge and common knowledge in a distri buted environment
    • J. Y. Halpern and Y. Moses. Knowledge and Common Knowledge in a Distri buted Environment. Journal of the ACM, 37(3):549-587, 1990.
    • (1990) Journal of the ACM , vol.37 , Issue.3 , pp. 549-587
    • Halpern, J.Y.1    Moses, Y.2
  • 10
    • 0005638370 scopus 로고    scopus 로고
    • Topological nexttime logic
    • In M. Kracht, M. de Rijke, H. Wansing, and M. Zakharyaschev (eds.) CSLI Publications 87, Stanford, CA
    • B. Heinemann. Topological nexttime logic. In M. Kracht, M. de Rijke, H. Wansing, and M. Zakharyaschev (eds.) Advances in Modal Logic, Vol. 1:99-113, CSLI Publications 87, Stanford, CA, 1998.
    • (1998) Advances in Modal Logic , vol.1 , pp. 99-113
    • Heinemann, B.1
  • 11
    • 0347663577 scopus 로고    scopus 로고
    • Temporal aspects of the modal logic of subset spaces
    • B. Heinemann. Temporal Aspects of the Modal Logic of Subset Spaces. Theoretical Computer Science, 224(1- 2):135-155, 1999.
    • (1999) Theoretical Computer Science , vol.224 , Issue.1-2 , pp. 135-155
    • Heinemann, B.1
  • 13
    • 0000595575 scopus 로고
    • The computational complexity of provability in systems of modal propositional logic
    • R. E. Ladner. The Computational Complexity of Provability in Systems of Modal Propositional Logic. SIAM Journal of Computing, 6(3):467-480, 1977.
    • (1977) SIAM Journal of Computing , vol.6 , Issue.3 , pp. 467-480
    • Ladner, R.E.1
  • 14
    • 0000432049 scopus 로고
    • A solution to the decision problem for the lewis systems s2 and s4, with an application to topology
    • J. C. C. McKinsey. A Solution to the Decision Problem for the Lewis Systems S2 and S4, with an Application to Topology. Journal of Symbolic Logic, 6(3):117-141, 1941.
    • (1941) Journal of Symbolic Logic , vol.6 , Issue.3 , pp. 117-141
    • McKinsey, J.C.C.1
  • 15
    • 84892386247 scopus 로고    scopus 로고
    • On the translati on of qualitative spatial reasoning problems into modal logics
    • Springer, Berlin
    • W. Nutt. On the Translati on of Qualitative Spatial Reasoning Problems into Modal Logics. Lecture Notes in Artificial Intelligence, Vol. 1701:113-125, Springer, Berlin, 1999.
    • (1999) Lecture Notes in Artificial Intelligence , vol.1701 , pp. 113-125
    • Nutt, W.1
  • 16
    • 0000930876 scopus 로고
    • On the size of refut ation kripke models for some linear modal and tense logics
    • H. Ono and A. Nakamura. On the Size of Refut ation Kripke Models for Some Linear Modal and Tense Logics. Studia Logica 39(4):325-333, 1980.
    • (1980) Studia Logica , vol.39 , Issue.4 , pp. 325-333
    • Ono, H.1    Nakamura, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.