메뉴 건너뛰기




Volumn 2352, Issue , 2002, Pages 469-486

Probabilistic and voting approaches to cue integration for figure-ground segmentation

Author keywords

[No Author keywords available]

Indexed keywords

IMAGE SEGMENTATION; PIXELS; TEXTURES;

EID: 84949952595     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-47977-5_31     Document Type: Conference Paper
Times cited : (21)

References (28)
  • 1
    • 0031611061 scopus 로고    scopus 로고
    • Region-based parametric motion segmentation using color information
    • Jan
    • Y. Altunbasak, P.E. Eren, and A.M. Tekalp. Region-based parametric motion segmentation using color information. Graphical Models and Image Processing, 60(1):13–23, Jan 1998.
    • (1998) Graphical Models and Image Processing , vol.60 , Issue.1 , pp. 13-23
    • Altunbasak, Y.1    Eren, P.E.2    Tekalp, A.M.3
  • 2
    • 0029224188 scopus 로고
    • Layered representation of motion video using robust maximumlikelihood estimation of mixture models and MDL encoding
    • S. Ayer and H. Sawhney. Layered representation of motion video using robust maximumlikelihood estimation of mixture models and MDL encoding. In Proc. Int. Conf. on Computer Vision, pages 777–784, 1995.
    • (1995) Proc. Int. Conf. On Computer Vision , pp. 777-784
    • Ayer, S.1    Sawhney, H.2
  • 3
    • 0032310565 scopus 로고    scopus 로고
    • Color- and texture-based image segmentation using the Expectation-Maximization algorithm and its application to content-based image retrieval
    • S. Belongie, C. Carson, H. Greenspan, and J. Malik. Color- and texture-based image segmentation using the Expectation-Maximization algorithm and its application to content-based image retrieval. In Proc. Int. Conf. on Computer Vision, pages 675–682, 1998.
    • (1998) Proc. Int. Conf. On Computer Vision , pp. 675-682
    • Belongie, S.1    Carson, C.2    Greenspan, H.3    Malik, J.4
  • 4
    • 0003857778 scopus 로고    scopus 로고
    • A gentle tutorial on the EM algorithm and application to gaussian mixtures and Baum-Welch. Technical Report TR-97-021
    • Berkeley, CA, April
    • J. Bilmes. A gentle tutorial on the EM algorithm and application to gaussian mixtures and Baum-Welch. Technical Report TR-97-021, International Computer Science Institute, Berkeley, CA, April 1997.
    • (1997) International Computer Science Institute
    • Bilmes, J.1
  • 5
    • 0029772518 scopus 로고    scopus 로고
    • The robust estimation of multiple motions: Parametric and piecewise-smooth flow-fields
    • January
    • M.J. Black and P. Anandan. The robust estimation of multiple motions: Parametric and piecewise-smooth flow-fields. CVIU, 63(1):75–104, January 1996.
    • (1996) CVIU , vol.63 , Issue.1 , pp. 75-104
    • Black, M.J.1    Anandan, P.2
  • 8
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. J. R. Statist. Soc., 39 B:1–38, 1977.
    • (1977) J. R. Statist. Soc , vol.39 , Issue.B , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 12
    • 0035694199 scopus 로고    scopus 로고
    • Object based segmentation of video using color, motion and spatial information
    • S. Khan and M. Shah. Object based segmentation of video using color, motion and spatial information. In Proc. Computer Vision and Pattern Recognition, pages II:746–751, 2001.
    • (2001) Proc. Computer Vision and Pattern Recognition, , pp. 746-751
    • Khan, S.1    Shah, M.2
  • 18
    • 0034850447 scopus 로고    scopus 로고
    • Continuous global evidence-based bayesian modality fusion for simultaneous tracking of multiple objects
    • J. Sherrah and S. Gong. Continuous global evidence-based bayesian modality fusion for simultaneous tracking of multiple objects. In Proc. Int. Conf. on Computer Vision, pages II: 42–49, 2001.
    • (2001) Proc. Int. Conf. On Computer Vision , pp. 42-49
    • Sherrah, J.1    Gong, S.2
  • 20
    • 84937423982 scopus 로고    scopus 로고
    • Towards robust multi-cue integration for visual tracking
    • July 2001, Vancouver,BC
    • M. Spengler and B. Schiele. Towards robust multi-cue integration for visual tracking. In Computer Vision Systems, July 2001, Vancouver,BC, 2001.
    • (2001) Computer Vision Systems
    • Spengler, M.1    Schiele, B.2
  • 24
    • 4043114317 scopus 로고    scopus 로고
    • Bayesian modality fusion: Probabilistic integration of multiple vision cues for head tracking
    • K. Toyama and E. Horvitz. Bayesian modality fusion: Probabilistic integration of multiple vision cues for head tracking. In Proc. Asian Conference on Computer Vision, 2000.
    • (2000) Proc. Asian Conference on Computer Vision
    • Toyama, K.1    Horvitz, E.2
  • 25
    • 0010068049 scopus 로고    scopus 로고
    • Bootstrap initialization of nonparametric texture models for tracking
    • Dublin
    • K. Toyama and Y. Wu. Bootstrap initialization of nonparametric texture models for tracking. In Proc. 6th European Conf. on Computer Vision, Dublin, 2000.
    • (2000) Proc. 6Th European Conf. On Computer Vision
    • Toyama, K.1    Wu, Y.2
  • 28
    • 0034844508 scopus 로고    scopus 로고
    • A co-inference approach to robust visual tracking
    • Y. Wu and T.S. Huang. A co-inference approach to robust visual tracking. In Proc. Int. Conf. on Computer Vision, pages II: 26–33, 2001.
    • (2001) Proc. Int. Conf. On Computer Vision , pp. 26-33
    • Wu, Y.1    Huang, T.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.