-
1
-
-
0035890440
-
Issues and challenges facing rechargeable lithium batteries
-
Tarascon, J.-M. & Armand M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359-367 (2001).
-
(2001)
Nature
, vol.414
, pp. 359-367
-
-
Tarascon, J.-M.1
Armand, M.2
-
2
-
-
38949102073
-
Building better batteries
-
Armand, M. & Tarascon, J.-M. Building better batteries. Nature 451, 652-657 (2008).
-
(2008)
Nature
, vol.451
, pp. 652-657
-
-
Armand, M.1
Tarascon, J.-M.2
-
3
-
-
84893086944
-
Recent progress on flexible lithium rechargeable batteries
-
Gwon, H. et al. Recent progress on flexible lithium rechargeable batteries. Energy & Environ. Sci. 7, 538-551 (2014).
-
(2014)
Energy & Environ. Sci.
, vol.7
, pp. 538-551
-
-
Gwon, H.1
-
5
-
-
33645742139
-
Safety mechanisms in lithium-ion batteries
-
Balakrishnan, P. G., Ramesh, R. & Prem Kumar, T. Safety mechanisms in lithium-ion batteries. J. Power Sources 155, 401-414 (2006).
-
(2006)
J. Power Sources
, vol.155
, pp. 401-414
-
-
Balakrishnan, P.G.1
Ramesh, R.2
Prem Kumar, T.3
-
6
-
-
84875001722
-
Imprintable, bendable, and shape-conformable polymer electrolytes for versatile-shaped lithium-ion batteries
-
Kil, E.-H. et al. Imprintable, bendable, and shape-conformable polymer electrolytes for versatile-shaped lithium-ion batteries. Adv. Mater. 25, 1395-1400 (2013).
-
(2013)
Adv. Mater.
, vol.25
, pp. 1395-1400
-
-
Kil, E.-H.1
-
7
-
-
0031076663
-
A stable thin-film lithium electrolyte: Lithium phosphorus oxynitride
-
Yu, X., Bates, J. B., Jellison, G. E. & Hart F. X. A stable thin-film lithium electrolyte: Lithium phosphorus oxynitride. J. Electrochem. Soc. 144, 524-532 (1997).
-
(1997)
J. Electrochem. Soc.
, vol.144
, pp. 524-532
-
-
Yu, X.1
Bates, J.B.2
Jellison, G.E.3
Hart, F.X.4
-
8
-
-
0020900053
-
Thin film solid electrolyte and its application to secondary lithium cell
-
Kanehori, K., Matsumoto, K., Miyauchi, K. & Kudo, T. Thin film solid electrolyte and its application to secondary lithium cell. Solid State Ion. 9, 1445-1448 (1983).
-
(1983)
Solid State Ion.
, vol.9
, pp. 1445-1448
-
-
Kanehori, K.1
Matsumoto, K.2
Miyauchi, K.3
Kudo, T.4
-
12
-
-
84893028915
-
A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries
-
Seino, Y., Ota, T., Takada. K., Hayashi, A. & Tatsumisago, M. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci. 7, 627-631 (2014).
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 627-631
-
-
Seino, Y.1
Ota, T.2
Takada, K.3
Hayashi, A.4
Tatsumisago, M.5
-
13
-
-
78349305404
-
Preparation and ionic conductivity of Li7P3S11-z glass-ceramic electrolytes
-
Hayashi, A., Minami, K., Ujiie, S. & Tatsumisago, M. Preparation and ionic conductivity of Li7P3S11-z glass-ceramic electrolytes. J. Non-Cryst. Solids 356, 2670-2673 (2010).
-
(2010)
J. Non-Cryst. Solids
, vol.356
, pp. 2670-2673
-
-
Hayashi, A.1
Minami, K.2
Ujiie, S.3
Tatsumisago, M.4
-
14
-
-
0000482535
-
Lithium ionic conductor thio-LISICON
-
Kanno, R. & Murayama, M. Lithium ionic conductor thio-LISICON. J. Electrochem. Soc. 148, A742-A746 (2001).
-
(2001)
J. Electrochem. Soc.
, vol.148
, pp. A742-A746
-
-
Kanno, R.1
Murayama, M.2
-
15
-
-
80052054095
-
A lithium superionic conductor
-
Kamaya N. et al. A lithium superionic conductor. Nat. Mater. 10, 682-686 (2011).
-
(2011)
Nat. Mater.
, vol.10
, pp. 682-686
-
-
Kamaya, N.1
-
16
-
-
84855666963
-
First principles study of the Li10GeP2S12 lithium super ionic conductor material
-
Mo, Y., Ong, S. P. & Ceder, G. First principles study of the Li10GeP2S12 lithium super ionic conductor material. Chem. Mater. 24, 15-17 (2012).
-
(2012)
Chem. Mater.
, vol.24
, pp. 15-17
-
-
Mo, Y.1
Ong, S.P.2
Ceder, G.3
-
17
-
-
84872706273
-
Progress and prospective of solid-state lithium batteries
-
Takada, K. Progress and prospective of solid-state lithium batteries. Acta Mater. 61, 759-770 (2013)
-
(2013)
Acta Mater.
, vol.61
, pp. 759-770
-
-
Takada, K.1
-
19
-
-
0142185824
-
Lithium lanthanum titanates: A review
-
Stramare, S., Thangadurai, V. & Weppner, W. Lithium lanthanum titanates: A review. Chem. Mater. 15, 3974-3990 (2003).
-
(2003)
Chem. Mater.
, vol.15
, pp. 3974-3990
-
-
Stramare, S.1
Thangadurai, V.2
Weppner, W.3
-
20
-
-
41549101456
-
Three-dimensionally ordered composite electrode between LiMn2O4 and Li1.5Al0.5Ti1.5(PO4)3
-
Nakano, H., Dokko, K. Hara, M., Isshiki, Y. & Kanamura, K. Three-dimensionally ordered composite electrode between LiMn2O4 and Li1.5Al0.5Ti1.5(PO4)3. Ionics 14, 173-177 (2008).
-
(2008)
Ionics
, vol.14
, pp. 173-177
-
-
Nakano, H.1
Dokko Hara K, M.2
Isshiki, Y.3
Kanamura, K.4
-
21
-
-
35349008587
-
Fast lithium ion conduction in garnet-type Li7La3Zr2O12
-
Murugan, R., Thangadurai, V. & Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778-7781 (2007).
-
(2007)
Angew. Chem. Int. Ed.
, vol.46
, pp. 7778-7781
-
-
Murugan, R.1
Thangadurai, V.2
Weppner, W.3
-
22
-
-
84855273061
-
Effect of sintering temperature on structure and ionic conductivity of Li7-xLa3Zr2O12-0.5x (x= 0.5~0.7) ceramics
-
Huang, M. et al. Effect of sintering temperature on structure and ionic conductivity of Li7-xLa3Zr2O12-0.5x (x= 0.5~0.7) ceramics. Solid State Ion. 204-205, 41-45 (2011).
-
(2011)
Solid State Ion.
, vol.204-205
, pp. 41-45
-
-
Huang, M.1
-
23
-
-
77956208719
-
Compatibility of Li7La3Zr2O12 solid electrolyte to all-solid-state battery using Li metal anode
-
Kotobuki, M., Munakata, H., Kanamura, K., Sato, Y. & Yoshida, T. Compatibility of Li7La3Zr2O12 solid electrolyte to all-solid-state battery using Li metal anode. J. Electrochem. Soc. 157, A1076-A1079 (2010).
-
(2010)
J. Electrochem. Soc.
, vol.157
, pp. A1076-A1079
-
-
Kotobuki, M.1
Munakata, H.2
Kanamura, K.3
Sato, Y.4
Yoshida, T.5
-
24
-
-
84862678110
-
Effect of Si, in and Ge doping on high ionic conductivity of Li7La3Zr2O12
-
Huang, M., Dumon, A. & Nan, C.-W. Effect of Si, In and Ge doping on high ionic conductivity of Li7La3Zr2O12. Electrochem. Commun. 21, 62-64 (2012).
-
(2012)
Electrochem. Commun.
, vol.21
, pp. 62-64
-
-
Huang, M.1
Dumon, A.2
Nan, C.-W.3
-
25
-
-
78751639017
-
High lithium ionic conductivity in the garnet-type oxide Li7-xLa3(Zr2-x, Nbx)O12 (x= 0-2)
-
Ohta, S., Kobayashi, T. & Asaoka, T. High lithium ionic conductivity in the garnet-type oxide Li7-xLa3(Zr2-x, Nbx)O12 (x= 0-2). J. Power Sources 196, 3342-3345 (2011).
-
(2011)
J. Power Sources
, vol.196
, pp. 3342-3345
-
-
Ohta, S.1
Kobayashi, T.2
Asaoka, T.3
-
26
-
-
79954602512
-
High lithium ion conductive Li7La3Zr2O12 by inclusion of both Al and Si
-
Kumazaki, S. et al. High lithium ion conductive Li7La3Zr2O12 by inclusion of both Al and Si. Electrochem. Commun. 13, 509-512 (2011).
-
(2011)
Electrochem. Commun.
, vol.13
, pp. 509-512
-
-
Kumazaki, S.1
-
27
-
-
84900842959
-
Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery
-
Ohta, S. et al. Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery. J. Power Sources 265, 40-44 (2014).
-
(2014)
J. Power Sources
, vol.265
, pp. 40-44
-
-
Ohta, S.1
-
29
-
-
84857916074
-
High lithium ion conduction in garnet-type Li6La3ZrTaO12
-
Li, Y., Wang, C.-A., Xie, H., Cheng, J. & Goodenough, J. B. High lithium ion conduction in garnet-type Li6La3ZrTaO12. Electrochem. Commun. 13, 1289-1292 (2011).
-
(2011)
Electrochem. Commun.
, vol.13
, pp. 1289-1292
-
-
Li, Y.1
Wang, C.-A.2
Xie, H.3
Cheng, J.4
Goodenough, J.B.5
-
30
-
-
79961020929
-
Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method
-
Jin, Y. & McGinn, P. J. Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method. J. Power Sources 196, 8683-8687 (2011).
-
(2011)
J. Power Sources
, vol.196
, pp. 8683-8687
-
-
Jin, Y.1
McGinn, P.J.2
-
31
-
-
84857912507
-
Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12
-
Allen, J. L., Wolfenstine, J., Rangasamy, E. & Sakamoto, J. Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. J. Power Sources 206, 315-319 (2012).
-
(2012)
J. Power Sources
, vol.206
, pp. 315-319
-
-
Allen, J.L.1
Wolfenstine, J.2
Rangasamy, E.3
Sakamoto, J.4
-
32
-
-
84861529347
-
Synthesis and high Li-ion conductivity of Ga-stabilized cubic Li7La3Zr2O12
-
Wolfenstine, J., Ratchford, J., Rangasamy, E. Sakamoto, J. & Allen J. L. Synthesis and high Li-ion conductivity of Ga-stabilized cubic Li7La3Zr2O12. Mater. Chem. Phys. 134, 571-575 (2012).
-
(2012)
Mater. Chem. Phys.
, vol.134
, pp. 571-575
-
-
Wolfenstine, J.1
Ratchford, J.2
Rangasamy, E.3
Sakamoto, J.4
Allen, J.L.5
-
33
-
-
68049106096
-
Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure
-
Awaka, J., Kijima, N., Hayakawa, H. & Akimoto, J. Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. J. Solid State Chem. 182, 2046-2052 (2009).
-
(2009)
J. Solid State Chem.
, vol.182
, pp. 2046-2052
-
-
Awaka, J.1
Kijima, N.2
Hayakawa, H.3
Akimoto, J.4
-
34
-
-
84882237641
-
Effect of Rb and Ta Doping on the ionic conductivity and stability of the garnet Li7+2x-y(La3-xRbx)(Zr2-yTay)O12 (0≤ x≤ 0.375, 0≤ y≤ 1) Superionic Conductor: A first principles investigation
-
Miara, L. J. et al. Effect of Rb and Ta Doping on the ionic conductivity and stability of the garnet Li7+2x-y(La3-xRbx)(Zr2-yTay)O12 (0≤ x≤ 0.375, 0≤ y≤ 1) Superionic Conductor: A first principles investigation. Chem. Mater. 25, 3048-3055 (2013).
-
(2013)
Chem. Mater.
, vol.25
, pp. 3048-3055
-
-
Miara, L.J.1
-
35
-
-
79951631223
-
Crystal chemistry and stability of "Li7La3Zr2O12" garnet: A fast lithium-ion conductor
-
Geiger, C. A. et al. Crystal chemistry and stability of "Li7La3Zr2O12" garnet: A fast lithium-ion conductor. Inorgan. Chem. 50, 1089-1097 (2011).
-
(2011)
Inorgan. Chem.
, vol.50
, pp. 1089-1097
-
-
Geiger, C.A.1
-
36
-
-
83655201181
-
The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12
-
Rangasamy, E., Wolfenstine, J. & Sakamoto, J. The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ion. 206, 28-32 (2012).
-
(2012)
Solid State Ion.
, vol.206
, pp. 28-32
-
-
Rangasamy, E.1
Wolfenstine, J.2
Sakamoto, J.3
-
37
-
-
84891616230
-
Low temperature synthesis of Al-doped Li7La3Zr2O12 solid electrolyte by a sol-gel process
-
Takano, R., Tadanaga, K., Hayashi, A. & Tatsumisago, M. Low temperature synthesis of Al-doped Li7La3Zr2O12 solid electrolyte by a sol-gel process. Solid State Ion. 255, 104-107 (2014).
-
(2014)
Solid State Ion.
, vol.255
, pp. 104-107
-
-
Takano, R.1
Tadanaga, K.2
Hayashi, A.3
Tatsumisago, M.4
-
38
-
-
84855919892
-
Synthesis of cubic phase Li7La3Zr2O12 electrolyte for solid-state lithium-ion batteries
-
Tan, J. & Tiwari, A. Synthesis of cubic phase Li7La3Zr2O12 electrolyte for solid-state lithium-ion batteries. Electrochem. Solid-State Lett. 15, A37-A39 (2011).
-
(2011)
Electrochem. Solid-State Lett.
, vol.15
, pp. A37-A39
-
-
Tan, J.1
Tiwari, A.2
-
39
-
-
84905188430
-
Tetragonal vs. Cubic phase stability in Al-free Ta doped Li7La3Zr2O12 (LLZO)
-
Thompson, T. et al. Tetragonal vs. cubic phase stability in Al-free Ta doped Li7La3Zr2O12 (LLZO). J. Mater. Chem. A 2, 13431-13436 (2014).
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 13431-13436
-
-
Thompson, T.1
-
40
-
-
84869029255
-
Origin of the structural phase transition in Li7La3Zr2O12
-
Bernstein, N., Johannes, M. & Hoang, K. Origin of the structural phase transition in Li7La3Zr2O12. Phys. Rev. Lett. 109, 205702 (2012).
-
(2012)
Phys. Rev. Lett.
, vol.109
, pp. 205702
-
-
Bernstein, N.1
Johannes, M.2
Hoang, K.3
-
41
-
-
84899459251
-
DFT Study of the role of Al3+ in the fast ion-conductor Li7-3xAl3+xLa3Zr2O12 Garnet
-
Rettenwander, D. et al. DFT Study of the role of Al3+ in the fast ion-conductor Li7-3xAl3+xLa3Zr2O12 Garnet. Chem. Mater. 26, 2617-2623 (2014).
-
(2014)
Chem. Mater.
, vol.26
, pp. 2617-2623
-
-
Rettenwander, D.1
-
42
-
-
84867581004
-
Screening of the alkali-metal ion containing materials from the inorganic crystal structure database (ICSD) for high ionic conductivity pathways using the bond valence method
-
Avdeev, M., Sale, M., Adams, S. & Rao, R. P. Screening of the alkali-metal ion containing materials from the inorganic crystal structure database (ICSD) for high ionic conductivity pathways using the bond valence method. Solid State Ion. 225, 43-46 (2012).
-
(2012)
Solid State Ion.
, vol.225
, pp. 43-46
-
-
Avdeev, M.1
Sale, M.2
Adams, S.3
Rao, R.P.4
-
43
-
-
84866533855
-
3DBVSMAPPER: A program for automatically generating bond-valence sum landscapes
-
Sale, M. & Avdeev, M. 3DBVSMAPPER: a program for automatically generating bond-valence sum landscapes. J. Appl. Crystallograph. 45, 1054-1056 (2012).
-
(2012)
J. Appl. Crystallograph.
, vol.45
, pp. 1054-1056
-
-
Sale, M.1
Avdeev, M.2
-
44
-
-
0001322105
-
Rationale for mixing exact exchange with density functional approximations
-
Perdew, J. P., Ernzerhof, M. & Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, 9982-9985 (1996).
-
(1996)
J. Chem. Phys.
, vol.105
, pp. 9982-9985
-
-
Perdew, J.P.1
Ernzerhof, M.2
Burke, K.3
-
45
-
-
25744460922
-
Projector augmented-wave method
-
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).
-
(1994)
Phys. Rev. B
, vol.50
, pp. 17953
-
-
Blöchl, P.E.1
-
46
-
-
0011236321
-
From ultrasoft psedopotentials to the projector augmented-wave method
-
Kresse, G. & Joubert, D. From ultrasoft psedopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).
-
(1999)
Phys. Rev. B
, vol.59
, pp. 1758
-
-
Kresse, G.1
Joubert, D.2
-
47
-
-
78751554038
-
Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12
-
Awaka, J. et al. Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12. Chem. Lett. 40, 60-62 (2011).
-
(2011)
Chem. Lett.
, vol.40
, pp. 60-62
-
-
Awaka, J.1
-
48
-
-
84977266737
-
Evaluation of optical and electrostatic lattice potentials
-
Ewald, P. Evaluation of optical and electrostatic lattice potentials. Ann. Phys. 64, 253-287 (1921).
-
(1921)
Ann. Phys.
, vol.64
, pp. 253-287
-
-
Ewald, P.1
-
49
-
-
84870720323
-
Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis
-
Ong, S. P. et al. Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314-319 (2013).
-
(2013)
Comput. Mater. Sci.
, vol.68
, pp. 314-319
-
-
Ong, S.P.1
|