메뉴 건너뛰기




Volumn 10, Issue 1, 2015, Pages

Modelling aboveground forest biomass using airborne laser scanner data in the miombo woodlands of Tanzania

Author keywords

k NN; LMM; Non parametric models; Parametric models; Prediction accuracy; Sampling design

Indexed keywords

ACCURACY ASSESSMENT; AIRBORNE SENSING; ALLOMETRY; BIOMASS; FOREST DYNAMICS; SATELLITE DATA; WOODLAND;

EID: 84949807905     PISSN: None     EISSN: 17500680     Source Type: Journal    
DOI: 10.1186/s13021-015-0037-2     Document Type: Article
Times cited : (32)

References (76)
  • 1
    • 80051773701 scopus 로고    scopus 로고
    • A reassessment of carbon content in tropical trees
    • Martin AR, Thomas SC. A reassessment of carbon content in tropical trees. PLoS One. 2011;6:e23533.
    • (2011) PLoS One , vol.6 , pp. e23533
    • Martin, A.R.1    Thomas, S.C.2
  • 2
    • 79952950566 scopus 로고    scopus 로고
    • Monitoring, reporting and verification for national REDD plus programmes: two proposals.
    • Herold M, Skutsch M. Monitoring, reporting and verification for national REDD plus programmes: two proposals. Environ Res Lett. 2011. doi:10.1088/1748-9326/6/1/014002.
    • (2011) Environ Res Lett.
    • Herold, M.1    Skutsch, M.2
  • 3
    • 84885460562 scopus 로고    scopus 로고
    • REDD+ readiness: early insights on monitoring, reporting and verification systems of project developers
    • Joseph S, Herold M, Sunderlin WD, Verchot LV. REDD+ readiness: early insights on monitoring, reporting and verification systems of project developers. Environ Res Lett. 2013;8:034038.
    • (2013) Environ Res Lett , vol.8 , pp. 034038
    • Joseph, S.1    Herold, M.2    Sunderlin, W.D.3    Verchot, L.V.4
  • 4
    • 84949830696 scopus 로고    scopus 로고
    • National forest resources monitoring and assessment of Tanzania mainland (NAFORMA).
    • Accessed 17 Aug 2015.
    • MNRT. National forest resources monitoring and assessment of Tanzania mainland (NAFORMA). Main results. 2015. http://www.fao.org/forestry/43 612cf2f02c20b55c1c00569e679197dcde.pdf. Accessed 17 Aug 2015.
    • (2015) Main results
  • 5
    • 77958513981 scopus 로고    scopus 로고
    • Getting ready for REDD+ in Tanzania: a case study of progress and challenges
    • Burgess ND, Bahane B, Clairs T, Danielsen F, Dalsgaard S, Funder M, et al. Getting ready for REDD+ in Tanzania: a case study of progress and challenges. Oryx. 2010;44:339-51.
    • (2010) Oryx , vol.44 , pp. 339-351
    • Burgess, N.D.1    Bahane, B.2    Clairs, T.3    Danielsen, F.4    Dalsgaard, S.5    Funder, M.6
  • 8
    • 84909634662 scopus 로고    scopus 로고
    • Area-based inventory in Norway-from innovation to an operational reality.
    • Maltamo M, Næsset E, Vauhkonen J, editors. Dordrecht: Springer
    • Næsset E. Area-based inventory in Norway-from innovation to an operational reality. In: Maltamo M, Næsset E, Vauhkonen J, editors. Forestry applications of airborne laser scanning-concepts and case studies. Dordrecht: Springer; 2014. p. 215-40.
    • (2014) Forestry applications of airborne laser scanning-concepts and case studies. , pp. 215-240
    • Næsset, E.1
  • 9
    • 84979971882 scopus 로고    scopus 로고
    • Modeling aboveground biomass in dense tropical submontane rainforest using airborne laser scanner data
    • Hansen EH, Gobakken T, Bollandsås OM, Zahabu E, Næsset E. Modeling aboveground biomass in dense tropical submontane rainforest using airborne laser scanner data. Remote Sens. 2015;7:788-807.
    • (2015) Remote Sens , vol.7 , pp. 788-807
    • Hansen, E.H.1    Gobakken, T.2    Bollandsås, O.M.3    Zahabu, E.4    Næsset, E.5
  • 10
    • 84903647625 scopus 로고    scopus 로고
    • Estimating above-ground biomass of tropical rainforest of different degradation levels in Northern Borneo using airborne LiDAR
    • Ioki K, Tsuyuki S, Hirata Y, Phua M-H, Wong WVC, Ling Z-Y, et al. Estimating above-ground biomass of tropical rainforest of different degradation levels in Northern Borneo using airborne LiDAR. For Ecol Manage. 2014;328:335-41. doi:10.1016/j.foreco.2014.06.003.
    • (2014) For Ecol Manage , vol.328 , pp. 335-341
    • Ioki, K.1    Tsuyuki, S.2    Hirata, Y.3    Phua, M.-H.4    Wong, W.V.C.5    Ling, Z.-Y.6
  • 12
    • 84860991459 scopus 로고    scopus 로고
    • Estimating biomass in Hedmark County, Norway using national forest inventory field plots and airborne laser scanning
    • Gobakken T, Næsset E, Nelson R, Bollandsås OM, Gregoire TG, Ståhl G, et al. Estimating biomass in Hedmark County, Norway using national forest inventory field plots and airborne laser scanning. Remote Sens Environ. 2012;123:443-56. doi:10.1016/j.rse.2012.01.025.
    • (2012) Remote Sens Environ , vol.123 , pp. 443-456
    • Gobakken, T.1    Næsset, E.2    Nelson, R.3    Bollandsås, O.M.4    Gregoire, T.G.5    Ståhl, G.6
  • 14
    • 84926245725 scopus 로고    scopus 로고
    • Using airborne laser scanning data to support forest sample surveys., Forestry applications of airborne laser scanning.
    • Maltamo M, Næsset E, Vauhkonen J, editors. Dordrecht: Springer
    • McRoberts RE, Andersen H-E, Næsset E. Using airborne laser scanning data to support forest sample surveys. Forestry applications of airborne laser scanning. In: Maltamo M, Næsset E, Vauhkonen J, editors. Forestry applications of airborne laser scanning-concepts and case studies. Dordrecht: Springer; 2014. p. 269-92.
    • (2014) Forestry applications of airborne laser scanning-concepts and case studies. , pp. 269-292
    • McRoberts, R.E.1    Andersen, H.-E.2    Næsset, E.3
  • 15
    • 84908097106 scopus 로고    scopus 로고
    • Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass
    • Fassnacht FE, Hartig F, Latifi H, Berger C, Hernández J, Corvalán P, et al. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sens Environ. 2014;154:102-14. doi:10.1016/j.rse.2014.07.028.
    • (2014) Remote Sens Environ , vol.154 , pp. 102-114
    • Fassnacht, F.E.1    Hartig, F.2    Latifi, H.3    Berger, C.4    Hernández, J.5    Corvalán, P.6
  • 19
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power
    • García S, Fernández A, Luengo J, Herrera F. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf Sci. 2010;180:2044-64. doi:10.1016/j.ins.2009.12.010.
    • (2010) Inf Sci , vol.180 , pp. 2044-2064
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 20
    • 0035889514 scopus 로고    scopus 로고
    • Stochastic structure and individual-tree growth models
    • Fox JC, Ades PK, Bi H. Stochastic structure and individual-tree growth models. For Ecol Manage. 2001;154:261-76. doi:10.1016/ S0378-112700632-0.
    • (2001) For Ecol Manage , vol.154 , pp. 261-276
    • Fox, J.C.1    Ades, P.K.2    Bi, H.3
  • 21
    • 84902180221 scopus 로고    scopus 로고
    • Goodness of fit tests for linear mixed models
    • Tang M, Slud EV, Pfeiffer RM. Goodness of fit tests for linear mixed models. J Multivar Anal. 2014;130:176-93. doi:10.1016/j.jmva.2014.03.012.
    • (2014) J Multivar Anal , vol.130 , pp. 176-193
    • Tang, M.1    Slud, E.V.2    Pfeiffer, R.M.3
  • 22
    • 84887279247 scopus 로고    scopus 로고
    • Linear mixed-effects models using R: a step-bystep approach.
    • New York: Springer
    • Galecki A, Burzykowski T. Linear mixed-effects models using R: a step-bystep approach. New York: Springer; 2013.
    • (2013)
    • Galecki, A.1    Burzykowski, T.2
  • 23
    • 77949487082 scopus 로고    scopus 로고
    • Modelling tree diameter from airborne laser scanning derived variables: a comparison of spatial statistical models
    • Salas C, Ene L, Gregoire TG, Næsset E, Gobakken T. Modelling tree diameter from airborne laser scanning derived variables: a comparison of spatial statistical models. Remote Sens Environ. 2010;114:1277-85. doi:10.1016/j.rse.2010.01.020.
    • (2010) Remote Sens Environ , vol.114 , pp. 1277-1285
    • Salas, C.1    Ene, L.2    Gregoire, T.G.3    Næsset, E.4    Gobakken, T.5
  • 24
    • 34250374908 scopus 로고    scopus 로고
    • The k-MSN method for the prediction of species-specific stand attributes using airborne laser scanning and aerial photographs
    • Packalén P, Maltamo M. The k-MSN method for the prediction of species-specific stand attributes using airborne laser scanning and aerial photographs. Remote Sens Environ. 2007;109:328-41. doi:10.1016/j.rse.2007.01.005.
    • (2007) Remote Sens Environ , vol.109 , pp. 328-341
    • Packalén, P.1    Maltamo, M.2
  • 25
    • 70449375185 scopus 로고    scopus 로고
    • The roles of nearest neighbor methods in imputing missing data in forest inventory and monitoring databases
    • Eskelson BN, Temesgen H, Lemay V, Barrett TM, Crookston NL, Hudak AT. The roles of nearest neighbor methods in imputing missing data in forest inventory and monitoring databases. Scand J For Res. 2009;24:235-46.
    • (2009) Scand J For Res , vol.24 , pp. 235-246
    • Eskelson, B.N.1    Temesgen, H.2    Lemay, V.3    Barrett, T.M.4    Crookston, N.L.5    Hudak, A.T.6
  • 26
    • 84875236734 scopus 로고    scopus 로고
    • A simulation approach for accuracy assessment of two-phase post-stratified estimation in large-area LiDAR biomass surveys
    • Ene LT, Næsset E, Gobakken T, Gregoire TG, Ståhl G, Holm S. A simulation approach for accuracy assessment of two-phase post-stratified estimation in large-area LiDAR biomass surveys. Remote Sens Environ. 2013;133:210-24. doi:10.1016/j.rse.2013.02.002.
    • (2013) Remote Sens Environ , vol.133 , pp. 210-224
    • Ene, L.T.1    Næsset, E.2    Gobakken, T.3    Gregoire, T.G.4    Ståhl, G.5    Holm, S.6
  • 27
    • 35548938953 scopus 로고    scopus 로고
    • Estimating areal means and variances of forest attributes using the k-nearest neighbors technique and satellite imagery
    • McRoberts RE, Tomppo EO, Finley AO, Heikkinen J. Estimating areal means and variances of forest attributes using the k-nearest neighbors technique and satellite imagery. Remote Sens Environ. 2007;111:466-80.
    • (2007) Remote Sens Environ , vol.111 , pp. 466-480
    • McRoberts, R.E.1    Tomppo, E.O.2    Finley, A.O.3    Heikkinen, J.4
  • 28
    • 84899460698 scopus 로고    scopus 로고
    • Mapping attributes of Canada's forests at moderate resolution through k NN and MODIS imagery
    • Beaudoin A, Bernier P, Guindon L, Villemaire P, Guo X, Stinson G, et al. Mapping attributes of Canada's forests at moderate resolution through k NN and MODIS imagery. Can J For Res. 2014;44:521-32.
    • (2014) Can J For Res , vol.44 , pp. 521-532
    • Beaudoin, A.1    Bernier, P.2    Guindon, L.3    Villemaire, P.4    Guo, X.5    Stinson, G.6
  • 29
    • 84870319143 scopus 로고    scopus 로고
    • k-NN FOREST: a software for the non-parametric prediction and mapping of environmental variables by the k-nearest neighbors algorithm.
    • Chirici G, Corona P, Marchetti M, Mastronardi A, Maselli F, Bottai L et al. k-NN FOREST: a software for the non-parametric prediction and mapping of environmental variables by the k-nearest neighbors algorithm. Remote Sens Environ 2012;45:433-42.
    • (2012) Remote Sens Environ , vol.45 , pp. 433-442
    • Chirici, G.1    Corona, P.2    Marchetti, M.3    Mastronardi, A.4    Maselli, F.5    Bottai, L.6
  • 30
    • 84889596950 scopus 로고    scopus 로고
    • Parametric vs, nonparametric LiDAR models for operational forest inventory in boreal Ontario.
    • Penner M, Pitt D, Woods M. Parametric vs. nonparametric LiDAR models for operational forest inventory in boreal Ontario. Can J Remote Sens. 2013;39:426-43.
    • (2013) Can J Remote Sens , vol.39 , pp. 426-443
    • Penner, M.1    Pitt, D.2    Woods, M.3
  • 31
    • 84922429517 scopus 로고    scopus 로고
    • A comparison of selected parametric and non-parametric imputation methods for estimating forest biomass and basal area
    • Gagliasso D, Hummel S, Temesgen H. A comparison of selected parametric and non-parametric imputation methods for estimating forest biomass and basal area. Open J For. 2014;4:42.
    • (2014) Open J For , vol.4 , pp. 42
    • Gagliasso, D.1    Hummel, S.2    Temesgen, H.3
  • 32
    • 84882267103 scopus 로고    scopus 로고
    • Comparing parametric and non-parametric modelling of diameter distributions on independent data using airborne laser scanning in a boreal conifer forest
    • Bollandsås OM, Maltamo M, Gobakken T, Næsset E. Comparing parametric and non-parametric modelling of diameter distributions on independent data using airborne laser scanning in a boreal conifer forest. Forestry. 2013;86:493-501.
    • (2013) Forestry , vol.86 , pp. 493-501
    • Bollandsås, O.M.1    Maltamo, M.2    Gobakken, T.3    Næsset, E.4
  • 33
    • 84922780879 scopus 로고    scopus 로고
    • Airborne lidarbased estimates of tropical forest structure in complex terrain: opportunities and trade-offs for REDD+
    • Leitold V, Keller M, Morton DC, Cook BD, Shimabukuro YE. Airborne lidarbased estimates of tropical forest structure in complex terrain: opportunities and trade-offs for REDD+. Carbon Balance Manage. 2015;10:3.
    • (2015) Carbon Balance Manage , vol.10 , pp. 3
    • Leitold, V.1    Keller, M.2    Morton, D.C.3    Cook, B.D.4    Shimabukuro, Y.E.5
  • 35
    • 43949145887 scopus 로고    scopus 로고
    • Estimation of above-and below-ground biomass across regions of the boreal forest zone using airborne laser
    • Næsset E, Gobakken T. Estimation of above-and below-ground biomass across regions of the boreal forest zone using airborne laser. Remote Sens Environ. 2008;112:3079-90. doi:10.1016/j.rse.2008.03.004.
    • (2008) Remote Sens Environ , vol.112 , pp. 3079-3090
    • Næsset, E.1    Gobakken, T.2
  • 36
    • 0036218720 scopus 로고    scopus 로고
    • Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data
    • Næsset E. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens Environ. 2002;80:88-99. doi:10.1016/S0034-4257(01)00290-5.
    • (2002) Remote Sens Environ , vol.80 , pp. 88-99
    • Næsset, E.1
  • 37
    • 84876327306 scopus 로고    scopus 로고
    • Mapping biomass change after forest disturbance: applying LiDAR footprintderived models at key map scales.
    • Huang W, Sun G, Dubayah R, Cook B, Montesano P, Ni W, et al. Mapping biomass change after forest disturbance: applying LiDAR footprintderived models at key map scales. Remote Sens Environ. 2013;134:319-32. doi:10.1016/j.rse.2013.03.017.
    • (2013) Remote Sens Environ. , vol.134 , pp. 319-332
    • Huang, W.1    Sun, G.2    Dubayah, R.3    Cook, B.4    Montesano, P.5    Ni, W.6
  • 38
    • 84857126911 scopus 로고    scopus 로고
    • Integration of airborne lidar and vegetation types derived from aerial photography for mapping aboveground live biomass
    • Chen Q, Vaglio Laurin G, Battles JJ, Saah D. Integration of airborne lidar and vegetation types derived from aerial photography for mapping aboveground live biomass. Remote Sens Environ. 2012;121:108-17. doi:10.1016/j.rse.2012.01.021.
    • (2012) Remote Sens Environ , vol.121 , pp. 108-117
    • Chen, Q.1    Vaglio Laurin, G.2    Battles, J.J.3    Saah, D.4
  • 41
    • 84860309354 scopus 로고    scopus 로고
    • Comparing K nearest neighbours methods and linear regression-is there reason to select one over the other?
    • Haara A, Kangas A. Comparing K nearest neighbours methods and linear regression-is there reason to select one over the other? Math Comput For Nat Resour Sci (MCFNS). 2012;4:50-65.
    • (2012) Math Comput For Nat Resour Sci (MCFNS). , vol.4 , pp. 50-65
    • Haara, A.1    Kangas, A.2
  • 42
    • 39649113506 scopus 로고    scopus 로고
    • Comparison of linear and mixed-effect regression models and ak-nearest neighbour approach for estimation of single-tree biomass
    • Fehrmann L, Lehtonen A, Kleinn C, Tomppo E. Comparison of linear and mixed-effect regression models and ak-nearest neighbour approach for estimation of single-tree biomass. Can J For Res. 2008;38:1-9.
    • (2008) Can J For Res , vol.38 , pp. 1-9
    • Fehrmann, L.1    Lehtonen, A.2    Kleinn, C.3    Tomppo, E.4
  • 44
    • 58249132746 scopus 로고    scopus 로고
    • Design-based approach to k-nearest neighbours technique for coupling field and remotely sensed data in forest surveys
    • Baffetta F, Fattorini L, Franceschi S, Corona P. Design-based approach to k-nearest neighbours technique for coupling field and remotely sensed data in forest surveys. Remote Sens Environ. 2009;113:463-75.
    • (2009) Remote Sens Environ , vol.113 , pp. 463-475
    • Baffetta, F.1    Fattorini, L.2    Franceschi, S.3    Corona, P.4
  • 46
    • 84859930159 scopus 로고    scopus 로고
    • Scale-dependence of aboveground carbon accumulation in secondary forests of Panama: a test of the intermediate peak hypothesis
    • Mascaro J, Asner GP, Dent DH, DeWalt SJ, Denslow JS. Scale-dependence of aboveground carbon accumulation in secondary forests of Panama: a test of the intermediate peak hypothesis. For Ecol Manage. 2012;276:62-70.
    • (2012) For Ecol Manage , vol.276 , pp. 62-70
    • Mascaro, J.1    Asner, G.P.2    Dent, D.H.3    DeWalt, S.J.4    Denslow, J.S.5
  • 48
    • 70449729453 scopus 로고    scopus 로고
    • Tropical forest carbon assessment: integrating satellite and airborne mapping approaches
    • Asner GP. Tropical forest carbon assessment: integrating satellite and airborne mapping approaches. Environ Res Lett. 2009;4:034009.
    • (2009) Environ Res Lett , vol.4 , pp. 034009
    • Asner, G.P.1
  • 51
    • 80052609457 scopus 로고    scopus 로고
    • Estimation of tropical rain forest aboveground biomass with small-footprint lidar and hyperspectral sensors
    • Clark ML, Roberts DA, Ewel JJ, Clark DB. Estimation of tropical rain forest aboveground biomass with small-footprint lidar and hyperspectral sensors. Remote Sens Environ. 2011;115:2931-42. doi:10.1016/j. rse.2010.08.029.
    • (2011) Remote Sens Environ , vol.115 , pp. 2931-2942
    • Clark, M.L.1    Roberts, D.A.2    Ewel, J.J.3    Clark, D.B.4
  • 53
    • 84928886552 scopus 로고    scopus 로고
    • Effects of field plot size on prediction accuracy of aboveground biomass in airborne laser scanning-assisted inventories in tropical rain forests of Tanzania
    • Mauya E, Hansen E, Gobakken T, Bollandsås O, Malimbwi R, Næsset E. Effects of field plot size on prediction accuracy of aboveground biomass in airborne laser scanning-assisted inventories in tropical rain forests of Tanzania. Carbon Balance Manage. 2015;10:1-14. doi:10.1186/ s13021-015-0021-x.
    • (2015) Carbon Balance Manage , vol.10 , pp. 1-14
    • Mauya, E.1    Hansen, E.2    Gobakken, T.3    Bollandsås, O.4    Malimbwi, R.5    Næsset, E.6
  • 54
    • 84868663200 scopus 로고    scopus 로고
    • A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing
    • Zolkos S, Goetz S, Dubayah R. A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing. Remote Sens Environ. 2013;128:289-98.
    • (2013) Remote Sens Environ , vol.128 , pp. 289-298
    • Zolkos, S.1    Goetz, S.2    Dubayah, R.3
  • 55
    • 78650877896 scopus 로고    scopus 로고
    • Simulated impact of sample plot size and co-registration error on the accuracy and uncertainty of LiDAR-derived estimates of forest stand biomass
    • Frazer GW, Magnussen S, Wulder MA, Niemann KO. Simulated impact of sample plot size and co-registration error on the accuracy and uncertainty of LiDAR-derived estimates of forest stand biomass. Remote Sens Environ. 2011;115:636-49. doi:10.1016/j.rse.2010.10.008.
    • (2011) Remote Sens Environ , vol.115 , pp. 636-649
    • Frazer, G.W.1    Magnussen, S.2    Wulder, M.A.3    Niemann, K.O.4
  • 56
    • 84883628010 scopus 로고    scopus 로고
    • Allometric models for prediction of above-and belowground biomass of trees in the miombo woodlands of Tanzania
    • Mugasha WA, Eid T, Bollandsås OM, Malimbwi RE, Chamshama SAO, Zahabu E, et al. Allometric models for prediction of above-and belowground biomass of trees in the miombo woodlands of Tanzania. For Ecol Manage. 2013;310:87-101. doi:10.1016/j.foreco.2013.08.003.
    • (2013) For Ecol Manage , vol.310 , pp. 87-101
    • Mugasha, W.A.1    Eid, T.2    Bollandsås, O.M.3    Malimbwi, R.E.4    Chamshama, S.A.O.5    Zahabu, E.6
  • 58
  • 59
    • 0003671260 scopus 로고    scopus 로고
    • Javad positioning systems. In: Jose S, editor. CA.
    • Anon. Pinnacle user's manual; Javad positioning systems. In: Jose S, editor. CA. 1999.
    • (1999) Pinnacle user's manual
    • Anon.1
  • 60
    • 84928573393 scopus 로고    scopus 로고
    • NAFORMA field manual-biophysical.
    • Accessed 23 Feb 2014.
    • MNRT. NAFORMA field manual-biophysical. 2011. http://www.fao.org/ forestry/23484-05b4a32815ecc769685b21b03be44ea77.pdf. Accessed 23 Feb 2014.
    • (2011)
  • 61
    • 0032794144 scopus 로고    scopus 로고
    • Processing of laser scanner data-algorithms and applications
    • Axelsson P. Processing of laser scanner data-algorithms and applications. ISPRS J Photogramm Remote Sens. 1999;54:138-47.
    • (1999) ISPRS J Photogramm Remote Sens , vol.54 , pp. 138-147
    • Axelsson, P.1
  • 62
    • 85044575962 scopus 로고    scopus 로고
    • DEM generation from laser scanner data using adaptive TIN models
    • Axelsson P. DEM generation from laser scanner data using adaptive TIN models. Int Arch Photogramm Remote Sens. 2000;33:111-8.
    • (2000) Int Arch Photogramm Remote Sens , vol.33 , pp. 111-118
    • Axelsson, P.1
  • 63
    • 2342590151 scopus 로고    scopus 로고
    • Practical large-scale forest stand inventory using a small-footprint airborne scanning laser
    • Næsset E. Practical large-scale forest stand inventory using a small-footprint airborne scanning laser. Scand J For Res. 2004;19:164-79.
    • (2004) Scand J For Res , vol.19 , pp. 164-179
    • Næsset, E.1
  • 64
    • 77955132653 scopus 로고    scopus 로고
    • Leaps: regression subset selection.
    • R package version 2.9. Accessed 15 Jan 2015.
    • Lumley T. Leaps: regression subset selection. R package version 2.9. 2009. http://CRAN.R-project.org/package=leaps. Accessed 15 Jan 2015.
    • (2009)
    • Lumley, T.1
  • 65
    • 84863304598 scopus 로고    scopus 로고
    • R: a language and environment for statistical computing.
    • Vienna, Austria: R Foundation for Statistical Computing
    • Team RC. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2012. Open access available at: http://cranr-project.org. 2014.
    • (2012)
    • Team, R.C.1
  • 66
    • 84860178273 scopus 로고    scopus 로고
    • Using multifrequency radar and discrete-return LiDAR measurements to estimate above-ground biomass and biomass components in a coastal temperate forest
    • Tsui OW, Coops NC, Wulder MA, Marshall PL, McCardle A. Using multifrequency radar and discrete-return LiDAR measurements to estimate above-ground biomass and biomass components in a coastal temperate forest. ISPRS J Photogramm Remote Sens. 2012;69:121-33.
    • (2012) ISPRS J Photogramm Remote Sens , vol.69 , pp. 121-133
    • Tsui, O.W.1    Coops, N.C.2    Wulder, M.A.3    Marshall, P.L.4    McCardle, A.5
  • 67
    • 84915425007 scopus 로고
    • Some comments on C p
    • Mallows CL. Some comments on C p. Technometrics. 1973;15:661-75.
    • (1973) Technometrics , vol.15 , pp. 661-675
    • Mallows, C.L.1
  • 68
    • 59349116454 scopus 로고    scopus 로고
    • Mixed effects models and extensions in ecology with R.
    • Berlin: Springer
    • Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM. Mixed effects models and extensions in ecology with R. Berlin: Springer; 2009.
    • (2009)
    • Zuur, A.1    Ieno, E.N.2    Walker, N.3    Saveliev, A.A.4    Smith, G.M.5
  • 69
    • 0004095784 scopus 로고    scopus 로고
    • Mixed-effects models in S and S-PLUS.
    • Berlin: Springer
    • Pinheiro JC, Bates DM. Mixed-effects models in S and S-PLUS. Berlin: Springer; 2000.
    • (2000)
    • Pinheiro, J.C.1    Bates, D.M.2
  • 71
    • 58149269436 scopus 로고    scopus 로고
    • Regression estimation following the square-root transformation of the response
    • Gregoire TG, Lin QF, Boudreau J, Nelson R. Regression estimation following the square-root transformation of the response. Forest Science. 2008;54:597-606.
    • (2008) Forest Science , vol.54 , pp. 597-606
    • Gregoire, T.G.1    Lin, Q.F.2    Boudreau, J.3    Nelson, R.4
  • 72
    • 84864519896 scopus 로고    scopus 로고
    • Variable selection for hedonic model using machine learning approaches: a case study in Onondaga County, NY
    • Yoo S, Im J, Wagner JE. Variable selection for hedonic model using machine learning approaches: a case study in Onondaga County, NY. Landsc Urban Plan. 2012;107:293-306. doi:10.1016/j. landurbplan.2012.06.009.
    • (2012) Landsc Urban Plan , vol.107 , pp. 293-306
    • Yoo, S.1    Im, J.2    Wagner, J.E.3
  • 73
    • 84857982932 scopus 로고    scopus 로고
    • Estimating forest attribute parameters for small areas using nearest neighbors techniques
    • McRoberts RE. Estimating forest attribute parameters for small areas using nearest neighbors techniques. For Ecol Manage. 2012;272:3-12.
    • (2012) For Ecol Manage , vol.272 , pp. 3-12
    • McRoberts, R.E.1
  • 74
    • 34548451136 scopus 로고    scopus 로고
    • Remote sensing support for national forest inventories
    • McRoberts RE, Tomppo EO. Remote sensing support for national forest inventories. Remote Sens Environ. 2007;110:412-9.
    • (2007) Remote Sens Environ , vol.110 , pp. 412-419
    • McRoberts, R.E.1    Tomppo, E.O.2
  • 75
    • 40549143397 scopus 로고    scopus 로고
    • yaimpute: an r package for knn imputation
    • Crookston NL, Finley AO. yaimpute: an r package for knn imputation. J Stat Softw. 2008;23:1-16.
    • (2008) J Stat Softw , vol.23 , pp. 1-16
    • Crookston, N.L.1    Finley, A.O.2
  • 76
    • 84949830701 scopus 로고    scopus 로고
    • Package 'caret'.
    • Accessed 7 Jan 2014.
    • Engelhardt A, Kuhn MM. Package 'caret'. 2009. http://caret.r-forge.r-project. org/. Accessed 7 Jan 2014.
    • (2009)
    • Engelhardt, A.1    Kuhn, M.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.