메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 1003-1009

Regression model fitting under differential privacy and model inversion attack

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BUDGET CONTROL; DATA PRIVACY;

EID: 84949800474     PISSN: 10450823     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (57)

References (23)
  • 1
    • 35448955720 scopus 로고    scopus 로고
    • Privacy, accuracy, and consistency too: A holistic solution to contingency table release
    • ACM
    • Boaz Barak, Kamalika Chaudhuri, Cynthia Dwork, Satyen Kale, Frank McSherry, and Kunal Talwar. Privacy, accuracy, and consistency too: a holistic solution to contingency table release. In PODS, pages 273-282. ACM, 2007.
    • (2007) PODS , pp. 273-282
    • Barak, B.1    Chaudhuri, K.2    Dwork, C.3    Kale, S.4    McSherry, F.5    Talwar, K.6
  • 2
    • 84858769465 scopus 로고    scopus 로고
    • Privacy-preserving logistic regression
    • Citeseer
    • K. Chaudhuri and C. Monteleoni. Privacy-preserving logistic regression. In NIPS, pages 289-296. Citeseer, 2008.
    • (2008) NIPS , pp. 289-296
    • Chaudhuri, K.1    Monteleoni, C.2
  • 3
    • 80052688705 scopus 로고    scopus 로고
    • Personal privacy vs population privacy: Learning to attack anonymization
    • ACM
    • Graham Cormode. Personal privacy vs population privacy: learning to attack anonymization. In KDD, pages 1253-1261. ACM, 2011.
    • (2011) KDD , pp. 1253-1261
    • Cormode, G.1
  • 5
    • 79959954388 scopus 로고    scopus 로고
    • Differentially private data cubes: Optimizing noise sources and consistency
    • Bolin Ding, Marianne Winslett, Jiawei Han, and Zhenhui Li. Differentially private data cubes: optimizing noise sources and consistency. In SIGMOD, pages 217-228, 2011.
    • (2011) SIGMOD , pp. 217-228
    • Ding, B.1    Winslett, M.2    Han, J.3    Li, Z.4
  • 6
    • 33745556605 scopus 로고    scopus 로고
    • Calibrating noise to sensitivity in private data analysis
    • Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private data analysis. Theory of Cryptography, pages 265-284, 2006.
    • (2006) Theory of Cryptography , pp. 265-284
    • Dwork, C.1    McSherry, F.2    Nissim, K.3    Smith, A.4
  • 8
    • 77951192010 scopus 로고    scopus 로고
    • Accurate estimation of the degree distribution of private networks
    • IEEE
    • Michael Hay, Chao Li, Gerome Miklau, and David Jensen. Accurate estimation of the degree distribution of private networks. In ICDM, pages 169-178. IEEE, 2009.
    • (2009) ICDM , pp. 169-178
    • Hay, M.1    Li, C.2    Miklau, G.3    Jensen, D.4
  • 9
    • 78650518102 scopus 로고    scopus 로고
    • Boosting the accuracy of differentially private histograms through consistency
    • Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. Boosting the Accuracy of Differentially Private Histograms Through Consistency. Proceedings of the VLDB Endowment, 3(1), 2010.
    • (2010) Proceedings of the VLDB Endowment , vol.3 , Issue.1
    • Hay, M.1    Rastogi, V.2    Miklau, G.3    Suciu, D.4
  • 10
    • 79959983519 scopus 로고    scopus 로고
    • No free lunch in data privacy
    • Daniel Kifer and Ashwin Machanavajjhala. No free lunch in data privacy. In SIGMOD, pages 193-204, 2011.
    • (2011) SIGMOD , pp. 193-204
    • Kifer, D.1    Machanavajjhala, A.2
  • 11
    • 84866008575 scopus 로고    scopus 로고
    • Differential identifiability
    • Jaewoo Lee and Chris Clifton. Differential identifiability. In KDD, pages 1041-1049, 2012.
    • (2012) KDD , pp. 1041-1049
    • Lee, J.1    Clifton, C.2
  • 13
    • 79960016482 scopus 로고    scopus 로고
    • Differentially private recommender systems
    • Frank McSherry and Ilya Mironov. Differentially Private Recommender Systems. In KDD. ACM, 2009.
    • (2009) KDD. ACM
    • McSherry, F.1    Mironov, I.2
  • 14
    • 70849116921 scopus 로고    scopus 로고
    • Privacy integrated queries: An extensible platform for privacy-preserving data analysis
    • ACM
    • Frank McSherry. Privacy integrated queries: an extensible platform for privacy-preserving data analysis. In SIGMOD, pages 19-30. ACM, 2009.
    • (2009) SIGMOD , pp. 19-30
    • McSherry, F.1
  • 15
    • 77951167125 scopus 로고    scopus 로고
    • A differentially private graph estimator
    • IEEE
    • Darakhshan Mir and Rebecca Wright. A differentially private graph estimator. In ICDMW, pages 122-129. IEEE, 2009.
    • (2009) ICDMW , pp. 122-129
    • Mir, D.1    Wright, R.2
  • 16
    • 70350635777 scopus 로고    scopus 로고
    • Relationship privacy: Output perturbation for queries with joins
    • ACM
    • Vibhor Rastogi, Miachel Hay, Gerome Miklau, and Dan Suciu. Relationship privacy: Output perturbation for queries with joins. In PODS, pages 107-116. ACM, 2009.
    • (2009) PODS , pp. 107-116
    • Rastogi, V.1    Hay, M.2    Miklau, G.3    Suciu, D.4
  • 17
    • 82955196835 scopus 로고    scopus 로고
    • Sharing graphs using differentially private graph models
    • ACM
    • Alessandra Sala, Xiaohan Zhao, Christo Wilson, Haitao Zheng, and Ben Zhao. Sharing graphs using differentially private graph models. In ACM SIG-COMM, pages 81-98. ACM, 2011.
    • (2011) ACM SIG-COMM , pp. 81-98
    • Sala, A.1    Zhao, X.2    Wilson, C.3    Zheng, H.4    Zhao, B.5
  • 18
    • 84881628005 scopus 로고    scopus 로고
    • Preserving differential privacy in degree-correlation based graph generation
    • Yue Wang and Xintao Wu. Preserving differential privacy in degree-correlation based graph generation. Transactions on Data Privacy, 6:127-145, 2013.
    • (2013) Transactions on Data Privacy , vol.6 , pp. 127-145
    • Wang, Y.1    Wu, X.2
  • 19
    • 84874272542 scopus 로고    scopus 로고
    • On learning cluster coefficient of private networks
    • Yue Wang, Xintao Wu, Jun Zhu, and Yang Xiang. On learning cluster coefficient of private networks. In ASONAM, 2012.
    • (2012) ASONAM
    • Wang, Y.1    Wu, X.2    Zhu, J.3    Xiang, Y.4
  • 20
    • 84893600025 scopus 로고    scopus 로고
    • Differential privacy preserving spectral graph analysis
    • Yue Wang, Xintao Wu, and Leting Wu. Differential privacy preserving spectral graph analysis. In PAKDD (2), pages 329-340, 2013.
    • (2013) PAKDD , Issue.2 , pp. 329-340
    • Wang, Y.1    Wu, X.2    Wu, L.3
  • 21
    • 77952787160 scopus 로고    scopus 로고
    • Differential privacy via wavelet transforms
    • IEEE
    • Xiaokui Xiao, Guozhang Wang, and Johannes Gehrke. Differential privacy via wavelet transforms. In ICDE, pages 225-236. IEEE, 2010.
    • (2010) ICDE , pp. 225-236
    • Xiao, X.1    Wang, G.2    Gehrke, J.3
  • 22
    • 84893530010 scopus 로고    scopus 로고
    • On linear refinement of differential privacypreserving query answering
    • Xiaowei Ying, Xintao Wu, and Yue Wang. On linear refinement of differential privacypreserving query answering. In PAKDD (2), pages 353-364, 2013.
    • (2013) PAKDD (2) , pp. 353-364
    • Ying, X.1    Wu, X.2    Wang, Y.3
  • 23
    • 84873178476 scopus 로고    scopus 로고
    • Functional mechanism: Regression analysis under differential privacy
    • Jun Zhang, Zhenjie Zhang, Xiaokui Xiao, Yin Yang, and Marianne Winslett. Functional mechanism: regression analysis under differential privacy. Proceedings of the VLDB Endowment, 5(11):1364-1375, 2012.
    • (2012) Proceedings of the VLDB Endowment , vol.5 , Issue.11 , pp. 1364-1375
    • Zhang, J.1    Zhang, Z.2    Xiao, X.3    Yang, Y.4    Winslett, M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.