메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 3359-3365

Compressed spectral regression for efficient nonlinear dimensionality reduction

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLUSTERING ALGORITHMS; COMPUTATIONAL COMPLEXITY; COMPUTER VISION; DATA MINING; DATA REDUCTION; EIGENVALUES AND EIGENFUNCTIONS; NONLINEAR ANALYSIS; PATTERN RECOGNITION;

EID: 84949772778     PISSN: 10450823     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (14)

References (20)
  • 5
    • 36649009540 scopus 로고    scopus 로고
    • SRDA: An efficient algorithm for large scale discriminant analysis
    • Deng Cai, Xiaofei He, and Jiawei Han. SRDA: An efficient algorithm for large scale discriminant analysis. IEEE Transactions on Knowledge and Data Engineering, 20(1):1-12, 2008.
    • (2008) IEEE Transactions on Knowledge and Data Engineering , vol.20 , Issue.1 , pp. 1-12
    • Cai, D.1    He, X.2    Han, J.3
  • 14
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • Bruno A. Olshausen and David J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381(6583):607-609, 1996.
    • (1996) Nature , vol.381 , Issue.6583 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 15
    • 84976657333 scopus 로고
    • Algorithm 583 LSQR: Sparse linear equations and least squares problems
    • June
    • Christopher C. Paige and Michael A. Saunders. Algorithm 583 LSQR: Sparse linear equations and least squares problems. ACM Transactions on Mathematical Software, 8(2):195-209, June 1982.
    • (1982) ACM Transactions on Mathematical Software , vol.8 , Issue.2 , pp. 195-209
    • Paige, C.C.1    Saunders, M.A.2
  • 16
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Sam Roweis and Lawrence Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323-2326, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 17
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Scholkopf, A. Smola, and K. Muller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10:1299-1319, 1998.
    • (1998) Neural Computation , vol.10 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.2    Muller, K.3
  • 18
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J. Tenenbaum, V. de Silva, and J. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319-2323, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.1    De Silva, V.2    Langford, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.