메뉴 건너뛰기




Volumn 89, Issue , 2016, Pages 243-248

Entropy method combined with extreme learning machine method for the short-term photovoltaic power generation forecasting

Author keywords

Entropy method; Extreme learning machine; Photovoltaic power generation forecasting

Indexed keywords

ELECTRIC POWER GENERATION; ENERGY GAP; FORECASTING; KNOWLEDGE ACQUISITION; MACHINE LEARNING; PHOTOVOLTAIC CELLS; SOLAR ENERGY; WIND POWER;

EID: 84949683146     PISSN: 09600779     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.chaos.2015.11.008     Document Type: Article
Times cited : (72)

References (13)
  • 1
    • 78649447148 scopus 로고    scopus 로고
    • Development forecast of renewable energy power generation in china and its influence on the ghg control strategy of the country
    • [1] Cai, P., Tian, L., Huang, Q., Liu, T., Xu, G., Development forecast of renewable energy power generation in china and its influence on the ghg control strategy of the country. Renew Energy 36:4 (2011), 1284–1292, 10.1016/j.renene.2010.09.020.
    • (2011) Renew Energy , vol.36 , Issue.4 , pp. 1284-1292
    • Cai, P.1    Tian, L.2    Huang, Q.3    Liu, T.4    Xu, G.5
  • 2
    • 84884691502 scopus 로고    scopus 로고
    • The theory of a general quantum system interacting with a linear dissipative system
    • [2] Zaman, K., Naz, L., Khan, M.A., Khan, M.Z., The theory of a general quantum system interacting with a linear dissipative system. Ann Phys 29 (2014), 336–344, 10.1016/j.rser.2013.08.091.
    • (2014) Ann Phys , vol.29 , pp. 336-344
    • Zaman, K.1    Naz, L.2    Khan, M.A.3    Khan, M.Z.4
  • 3
    • 82355169494 scopus 로고    scopus 로고
    • A review on entropy generation in natural and mixed convection heat transfer for energy systems
    • [3] Al-Salem, K., Oztop, H.F., A review on entropy generation in natural and mixed convection heat transfer for energy systems. Renew Sustain Energy Rev 16:1 (2012), 911–920, 10.1016/j.rser.2011.09.012.
    • (2012) Renew Sustain Energy Rev , vol.16 , Issue.1 , pp. 911-920
    • Al-Salem, K.1    Oztop, H.F.2
  • 4
    • 80053972368 scopus 로고    scopus 로고
    • Online 24-h solar power forecasting based on weather type classification using artificial neural network
    • [4] Cai, T., Liu, B., Chen, C., Duan, S., Online 24-h solar power forecasting based on weather type classification using artificial neural network. Sol Energy 85:11 (2011), 2856–2870, 10.1016/j.solener.2011.08.027.
    • (2011) Sol Energy , vol.85 , Issue.11 , pp. 2856-2870
    • Cai, T.1    Liu, B.2    Chen, C.3    Duan, S.4
  • 5
    • 84979512485 scopus 로고    scopus 로고
    • Account the type of weather the short-term index of photovoltaic power output forecast
    • [5] Yuan Xiaoling, S.J., Account the type of weather the short-term index of photovoltaic power output forecast. Chin Soc Electr Eng 34 (2013), 57–64.
    • (2013) Chin Soc Electr Eng , vol.34 , pp. 57-64
    • Yuan Xiaoling, S.J.1
  • 6
    • 84979573741 scopus 로고    scopus 로고
    • Principal component analysis of photovoltaic power generation combined with neural network prediction
    • [6] Jiang Hao, H.L., Principal component analysis of photovoltaic power generation combined with neural network prediction. Autom Electr Power Syst 6 (2013), 101–105.
    • (2013) Autom Electr Power Syst , vol.6 , pp. 101-105
    • Jiang Hao, H.L.1
  • 7
    • 84979599659 scopus 로고    scopus 로고
    • Generating capacity of photovoltaic systems based on intelligent rbf forecast
    • [7] Yi Lingzhi, L.S., Generating capacity of photovoltaic systems based on intelligent rbf forecast. Power Technol 4 (2013), 606–611.
    • (2013) Power Technol , vol.4 , pp. 606-611
    • Yi Lingzhi, L.S.1
  • 8
    • 84979588813 scopus 로고    scopus 로고
    • Photovoltaic active prediction and its application in grid frequency control
    • [8] Shihui, C., Photovoltaic active prediction and its application in grid frequency control. Power Syst Prot Control 20 (2013), 125–129.
    • (2013) Power Syst Prot Control , vol.20 , pp. 125-129
    • Shihui, C.1
  • 9
    • 84979512597 scopus 로고    scopus 로고
    • Photovoltaic active prediction and its application in grid frequency control
    • [9] Hongzhu, L., Photovoltaic active prediction and its application in grid frequency control. Comput Meas Control 5 (2013), 1166–1170.
    • (2013) Comput Meas Control , vol.5 , pp. 1166-1170
    • Hongzhu, L.1
  • 10
    • 84979566329 scopus 로고    scopus 로고
    • For pv models predict tree model
    • [10] Yadong, D., For pv models predict tree model. Renew Energy 3 (2014), 253–258.
    • (2014) Renew Energy , vol.3 , pp. 253-258
    • Yadong, D.1
  • 11
    • 84979506950 scopus 로고    scopus 로고
    • Extreme learning machine short-term load forecasting
    • [11] Cheng Tianle, Z.S., Extreme learning machine short-term load forecasting. Based Power Sci Eng 4 (2013), 24–29.
    • (2013) Based Power Sci Eng , vol.4 , pp. 24-29
    • Cheng Tianle, Z.S.1
  • 12
    • 84979599667 scopus 로고    scopus 로고
    • Short-term prediction based on distributed photovoltaic power kernel extreme learning machine
    • [12] Liu Nian, L.X., Zhang Qingxin, Short-term prediction based on distributed photovoltaic power kernel extreme learning machine. Agric Eng 4 (2014), 152–159.
    • (2014) Agric Eng , vol.4 , pp. 152-159
    • Liu Nian, L.X.1    Zhang Qingxin2
  • 13
    • 0029195477 scopus 로고
    • Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions
    • [13] Hoshino, T., Osakada, M., Hussein, K.H., Muta, I., Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions. IEE Proc-Gener Transm Distrib 142:1 (1995), 59–64, 10.1049/ip-gtd:19951577.
    • (1995) IEE Proc-Gener Transm Distrib , vol.142 , Issue.1 , pp. 59-64
    • Hoshino, T.1    Osakada, M.2    Hussein, K.H.3    Muta, I.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.