-
1
-
-
0003593314
-
Antenna Theory – Analysis and Design
-
Wiley Hoboken, NJ
-
[1] Balanis, C.A., Antenna Theory – Analysis and Design. 2005, Wiley, Hoboken, NJ.
-
(2005)
-
-
Balanis, C.A.1
-
2
-
-
0036553053
-
Inverse source problem for Maxwell's equation in magnetoencephalography
-
[2] Ammari, H., Bao, G., Fleming, J., Inverse source problem for Maxwell's equation in magnetoencephalography. SIAM J. Appl. Math. 62 (2002), 1369–1382.
-
(2002)
SIAM J. Appl. Math.
, vol.62
, pp. 1369-1382
-
-
Ammari, H.1
Bao, G.2
Fleming, J.3
-
3
-
-
0032638277
-
Optical tomography in medical imaging
-
[3] Arridge, S., Optical tomography in medical imaging. Inverse Probl. 15 (1999), R41–R93.
-
(1999)
Inverse Probl.
, vol.15
, pp. R41-R93
-
-
Arridge, S.1
-
4
-
-
79953654399
-
Themoacoustic tomography arising in brain imaging
-
075011
-
[4] Stefanov, P., Uhlmann, G., Themoacoustic tomography arising in brain imaging. Inverse Probl., 27, 2011, 075011.
-
(2011)
Inverse Probl.
, vol.27
-
-
Stefanov, P.1
Uhlmann, G.2
-
5
-
-
0003430391
-
Inverse Problems for Partial Differential Equations
-
Springer-Verlag New York
-
[5] Isakov, V., Inverse Problems for Partial Differential Equations. 2006, Springer-Verlag, New York.
-
(2006)
-
-
Isakov, V.1
-
6
-
-
70450193186
-
Acoustic source identification using multiple frequency information
-
115005
-
[6] Eller, M., Valdivia, N.P., Acoustic source identification using multiple frequency information. Inverse Probl., 25, 2009, 115005.
-
(2009)
Inverse Probl.
, vol.25
-
-
Eller, M.1
Valdivia, N.P.2
-
7
-
-
78049297003
-
A multi-frequency inverse source problem
-
[7] Bao, G., Lin, J., Triki, F., A multi-frequency inverse source problem. J. Differential Equations 249 (2010), 3443–3465.
-
(2010)
J. Differential Equations
, vol.249
, pp. 3443-3465
-
-
Bao, G.1
Lin, J.2
Triki, F.3
-
8
-
-
84871727944
-
Numerical solution of the inverse source problem for the Helmholtz equation with multiple frequency data
-
[8] Bao, G., Lin, J., Triki, F., Numerical solution of the inverse source problem for the Helmholtz equation with multiple frequency data. Contemp. Math. 548 (2011), 45–60.
-
(2011)
Contemp. Math.
, vol.548
, pp. 45-60
-
-
Bao, G.1
Lin, J.2
Triki, F.3
-
9
-
-
84966246360
-
Energy flow: wave motion and geometrical optics
-
[9] Morawetz, C.S., Energy flow: wave motion and geometrical optics. Bull. Amer. Math. Soc. 76 (1970), 661–674.
-
(1970)
Bull. Amer. Math. Soc.
, vol.76
, pp. 661-674
-
-
Morawetz, C.S.1
-
10
-
-
84980073634
-
Continuous dependence on data for solutions of partial differential equations with a prescribed bound
-
[10] John, F., Continuous dependence on data for solutions of partial differential equations with a prescribed bound. Comm. Pure Appl. Math. 13 (1960), 551–587.
-
(1960)
Comm. Pure Appl. Math.
, vol.13
, pp. 551-587
-
-
John, F.1
-
11
-
-
77951995694
-
Increasing stability of the continuation for the Maxwell system
-
074005
-
[11] Aralumallige, S.D., Isakov, V., Increasing stability of the continuation for the Maxwell system. Inverse Probl., 26, 2010, 074005.
-
(2010)
Inverse Probl.
, vol.26
-
-
Aralumallige, S.D.1
Isakov, V.2
-
12
-
-
3042528735
-
Increased stability in the continuation of solutions to the Helmholtz equation
-
[12] Hrycak, T., Isakov, V., Increased stability in the continuation of solutions to the Helmholtz equation. Inverse Probl. 20 (2004), 697–712.
-
(2004)
Inverse Probl.
, vol.20
, pp. 697-712
-
-
Hrycak, T.1
Isakov, V.2
-
13
-
-
84872006751
-
Regions of stability in the Cauchy problem for the Helmholtz equation
-
[13] Isakov, V., Kindermann, S., Regions of stability in the Cauchy problem for the Helmholtz equation. Methods Appl. Anal. 18 (2011), 1–30.
-
(2011)
Methods Appl. Anal.
, vol.18
, pp. 1-30
-
-
Isakov, V.1
Kindermann, S.2
-
14
-
-
34548693219
-
Increased stability in the continuation for the Helmholtz equation with variable coefficient
-
[14] Isakov, V., Increased stability in the continuation for the Helmholtz equation with variable coefficient. Contemp. Math. 426 (2007), 255–269.
-
(2007)
Contemp. Math.
, vol.426
, pp. 255-269
-
-
Isakov, V.1
-
15
-
-
77951990301
-
Increased stability in the Cauchy problem for some elliptic equations
-
C. Bardos A. Fursikov Springer-Verlag
-
[15] Isakov, V., Increased stability in the Cauchy problem for some elliptic equations. Bardos, C., Fursikov, A., (eds.) Instability in Models Connected with Fluid Flow, 2007, Springer-Verlag, 337–360.
-
(2007)
Instability in Models Connected with Fluid Flow
, pp. 337-360
-
-
Isakov, V.1
-
16
-
-
80755150615
-
Increasing stability for the Schrödinger potential from the Dirichlet-to Neumann map
-
[16] Isakov, V., Increasing stability for the Schrödinger potential from the Dirichlet-to Neumann map. Discrete Contin. Dyn. Syst. Ser. S 4 (2011), 631–641.
-
(2011)
Discrete Contin. Dyn. Syst. Ser. S
, vol.4
, pp. 631-641
-
-
Isakov, V.1
-
17
-
-
84924995300
-
Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to Neumann map
-
[17] Isakov, V., Wang, J.-N., Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to Neumann map. Inverse Probl. Imaging 8 (2014), 1139–1150.
-
(2014)
Inverse Probl. Imaging
, vol.8
, pp. 1139-1150
-
-
Isakov, V.1
Wang, J.-N.2
-
18
-
-
0003511516
-
Vector-Valued Laplace Transforms and Cauchy Problems
-
Birkhäuser Basel
-
[18] Arendt, W., Batty, C., Hieber, M., Neubrander, F., Vector-Valued Laplace Transforms and Cauchy Problems. 2011, Birkhäuser, Basel.
-
(2011)
-
-
Arendt, W.1
Batty, C.2
Hieber, M.3
Neubrander, F.4
-
19
-
-
84957249045
-
Unique continuation for solutions, to PDE's; between Hörmander's theorem and Holmgren's theorem
-
[19] Tataru, D., Unique continuation for solutions, to PDE's; between Hörmander's theorem and Holmgren's theorem. Comm. Partial Differential Equations 20 (1995), 855–884.
-
(1995)
Comm. Partial Differential Equations
, vol.20
, pp. 855-884
-
-
Tataru, D.1
-
20
-
-
33847715280
-
Bounded Analytic Functions
-
Springer-Verlag New York
-
[20] Garnett, J., Bounded Analytic Functions. 2007, Springer-Verlag, New York.
-
(2007)
-
-
Garnett, J.1
-
21
-
-
84979864014
-
General hyperbolic diffraction problems
-
Amer. Math. Soc.
-
[21] Isakov, V., General hyperbolic diffraction problems. Trudy Sobolev Seminar, 1977, Amer. Math. Soc.
-
(1977)
Trudy Sobolev Seminar
-
-
Isakov, V.1
-
22
-
-
0009381238
-
Mixed problems for hyperbolic equations I, II
-
403–417
-
[22] Sakamoto, R., Mixed problems for hyperbolic equations I, II. J. Math. Kyoto Univ. 10 (1970), 349–373 403–417.
-
(1970)
J. Math. Kyoto Univ.
, vol.10
, pp. 349-373
-
-
Sakamoto, R.1
-
23
-
-
0041946012
-
Control Theory for Partial Differential Equations: Continuous and Approximation Theories
-
Cambridge University Press New York
-
[23] Lasiecka, I., Triggiani, R., Control Theory for Partial Differential Equations: Continuous and Approximation Theories. Encyclopedia Math. Appl., vols. 74–75, 2000, Cambridge University Press, New York.
-
(2000)
Encyclopedia Math. Appl.
, vol.74-75
-
-
Lasiecka, I.1
Triggiani, R.2
-
24
-
-
0001490384
-
Observabilite frontiere de l'equation des ondes
-
[24] Ho, L.F., Observabilite frontiere de l'equation des ondes. C. R. Acad. Sci. Paris 302 (1986), 443–446.
-
(1986)
C. R. Acad. Sci. Paris
, vol.302
, pp. 443-446
-
-
Ho, L.F.1
-
25
-
-
84937872089
-
A recursive algorithm for multi-frequency acoustic inverse source problems
-
[25] Bao, G., Lu, S., Rundell, W., Xu, B., A recursive algorithm for multi-frequency acoustic inverse source problems. SIAM J. Numer. Anal. 53 (2015), 1608–1628.
-
(2015)
SIAM J. Numer. Anal.
, vol.53
, pp. 1608-1628
-
-
Bao, G.1
Lu, S.2
Rundell, W.3
Xu, B.4
-
26
-
-
0026923885
-
Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundaries
-
[26] Bardos, C., Lebeau, J., Rauch, J., Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundaries. SIAM J. Control Optim. 30 (1992), 1024–1065.
-
(1992)
SIAM J. Control Optim.
, vol.30
, pp. 1024-1065
-
-
Bardos, C.1
Lebeau, J.2
Rauch, J.3
-
27
-
-
0347940923
-
Newton–Kantorovich method for 3-dimensional inverse scattering problem and stability of the hyperbolic Cauchy problem with time independent data
-
[27] Klibanov, M.M., Newton–Kantorovich method for 3-dimensional inverse scattering problem and stability of the hyperbolic Cauchy problem with time independent data. Inverse Probl. 7 (1991), 577–595.
-
(1991)
Inverse Probl.
, vol.7
, pp. 577-595
-
-
Klibanov, M.M.1
-
28
-
-
0000863910
-
Boundary controllability for conservative PDE's
-
[28] Tataru, D., Boundary controllability for conservative PDE's. Appl. Math. Optim. 31 (1995), 257–295.
-
(1995)
Appl. Math. Optim.
, vol.31
, pp. 257-295
-
-
Tataru, D.1
-
29
-
-
77956816816
-
Uniqueness and stability in the Cauchy problem for Maxwell' and elasticity systems
-
D. Cioranescu J.-L. Lions North-Holland, Elsevier Science
-
[29] Eller, M., Isakov, V., Nakamura, G., Tataru, D., Uniqueness and stability in the Cauchy problem for Maxwell' and elasticity systems. Cioranescu, D., Lions, J.-L., (eds.) Nonlinear Partial Differential Equations and Their Applications, 2002, North-Holland, Elsevier Science, 329–351.
-
(2002)
Nonlinear Partial Differential Equations and Their Applications
, pp. 329-351
-
-
Eller, M.1
Isakov, V.2
Nakamura, G.3
Tataru, D.4
-
30
-
-
84979858023
-
On increasing stability in the Cauchy problem for general elliptic equations
-
A. Favini et al. (eds.) North-Holland, Elsevier Science, Springer-Verlag (Ch. 10)
-
[30] Isakov, V., On increasing stability in the Cauchy problem for general elliptic equations. Favini, A., et al. (eds.) New Prospects in Direct, Inverse, and Control Problems for Evolution Equations Springer INdAM Ser., 2014, North-Holland, Elsevier Science, Springer-Verlag (Ch. 10).
-
(2014)
New Prospects in Direct, Inverse, and Control Problems for Evolution Equations, Springer INdAM Ser.
-
-
Isakov, V.1
-
31
-
-
84908503263
-
Sensitivity analysis of an inverse problem for the wave equations in the presence of caustics
-
[31] Bao, G., Zhang, H., Sensitivity analysis of an inverse problem for the wave equations in the presence of caustics. J. Amer. Math. Soc. 27 (2014), 953–981.
-
(2014)
J. Amer. Math. Soc.
, vol.27
, pp. 953-981
-
-
Bao, G.1
Zhang, H.2
|