-
3
-
-
0031549844
-
13 (M = Na, K, Rb, Cs)
-
13 (M = Na, K, Rb, Cs) Appl. Surf. Sci. 121/122 1997 521 524
-
(1997)
Appl. Surf. Sci.
, vol.121-122
, pp. 521-524
-
-
Ogura, S.1
Kohno, M.2
Sato, K.3
Inoue, Y.4
-
4
-
-
0039768997
-
A highly active photocatalyst for overall water splitting with a hydrated layered perovskite structure
-
T. Takata, K. Shinohara, A. Tanaka, M. Hara, J.N. Kondo, and K. Domen A highly active photocatalyst for overall water splitting with a hydrated layered perovskite structure J. Photochem. Photobiol. A 106 1997 45 49
-
(1997)
J. Photochem. Photobiol. A
, vol.106
, pp. 45-49
-
-
Takata, T.1
Shinohara, K.2
Tanaka, A.3
Hara, M.4
Kondo, J.N.5
Domen, K.6
-
6
-
-
0000716634
-
3 addition on photocatalytic decomposition of liquid water over various semiconductor catalysts
-
3 addition on photocatalytic decomposition of liquid water over various semiconductor catalysts J. Photochem. Photobiol. A 77 1994 243 247
-
(1994)
J. Photochem. Photobiol. A
, vol.77
, pp. 243-247
-
-
Sayama, K.1
Arakawa, H.2
-
7
-
-
0242669302
-
3 photocatalysts with high crystallinity and surface nanostructure
-
3 photocatalysts with high crystallinity and surface nanostructure J. Am. Chem. Soc. 125 2003 3082 3089
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 3082-3089
-
-
Kato, H.1
Asakura, K.2
Kudo, A.3
-
8
-
-
34250779498
-
New non-oxide photocatalysts designed for overall water splitting under visible light
-
K. Maeda, and K. Domen New non-oxide photocatalysts designed for overall water splitting under visible light J. Phys. Chem. C 111 2007 7851 7861
-
(2007)
J. Phys. Chem. C
, vol.111
, pp. 7851-7861
-
-
Maeda, K.1
Domen, K.2
-
11
-
-
84937734703
-
CdS/graphene nanocomposite photocatalysts
-
Q. Li, X. Li, S. Wageh, A.A. Al-Ghamdi, and J. Yu CdS/graphene nanocomposite photocatalysts Adv. Energy Mater. 5 2015 1500010 1500037
-
(2015)
Adv. Energy Mater.
, vol.5
, pp. 1500010-1500037
-
-
Li, Q.1
Li, X.2
Wageh, S.3
Al-Ghamdi, A.A.4
Yu, J.5
-
12
-
-
84961290672
-
Engineering heterogeneous semiconductors for solar water splitting
-
X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, and X. Chen Engineering heterogeneous semiconductors for solar water splitting J. Mater. Chem. A 3 2015 2485 2534
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 2485-2534
-
-
Li, X.1
Yu, J.2
Low, J.3
Fang, Y.4
Xiao, J.5
Chen, X.6
-
13
-
-
84903214309
-
4 -based photocatalysts for hydrogen generation
-
4 -based photocatalysts for hydrogen generation J. Phys. Chem. Lett. 5 2014 2101 2107
-
(2014)
J. Phys. Chem. Lett.
, vol.5
, pp. 2101-2107
-
-
Cao, S.1
Yu, J.2
-
15
-
-
84894504413
-
2 photocatalysts for efficient visible-light hydrogen production
-
2 photocatalysts for efficient visible-light hydrogen production J. Mater. Chem. A 2 2014 3847 3855
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 3847-3855
-
-
Wang, Y.1
Yu, J.2
Xiao, W.3
Li, Q.4
-
18
-
-
84896521395
-
Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting
-
J. Ran, J. Zhang, J. Yu, M. Jaroniec, and S.Z. Qiao Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting Chem. Soc. Rev. 43 2014 7787 7812
-
(2014)
Chem. Soc. Rev.
, vol.43
, pp. 7787-7812
-
-
Ran, J.1
Zhang, J.2
Yu, J.3
Jaroniec, M.4
Qiao, S.Z.5
-
20
-
-
84964425413
-
Nickel-based cocatalysts for photocatalytic hydrogen production
-
Y. Xu, and R. Xu Nickel-based cocatalysts for photocatalytic hydrogen production Appl. Surf. Sci. 351 2015 779 793
-
(2015)
Appl. Surf. Sci.
, vol.351
, pp. 779-793
-
-
Xu, Y.1
Xu, R.2
-
21
-
-
84893712812
-
2 film with preferred (0 0 1) orientation
-
2 film with preferred (0 0 1) orientation Appl. Surf. Sci. 292 2014 161 164
-
(2014)
Appl. Surf. Sci.
, vol.292
, pp. 161-164
-
-
Wang, C.1
Hu, Q.2
Huang, J.3
Zhu, C.4
Deng, Z.5
Shi, H.6
Wu, L.7
Liu, Z.8
Cao, Y.9
-
23
-
-
84942536273
-
Graphene-based photocatalysts for solar-fuel generation
-
Q. Xiang, B. Cheng, and J. Yu Graphene-based photocatalysts for solar-fuel generation Angew. Chem. Int. Ed. 2015 10.1002/anie.201411096
-
(2015)
Angew. Chem. Int. Ed.
-
-
Xiang, Q.1
Cheng, B.2
Yu, J.3
-
24
-
-
35848951576
-
Methanol steam reforming for hydrogen production
-
D.R. Palo, R.A. Dagle, and J.D. Holladay Methanol steam reforming for hydrogen production Chem. Rev. 107 2007 3992 4021
-
(2007)
Chem. Rev.
, vol.107
, pp. 3992-4021
-
-
Palo, D.R.1
Dagle, R.A.2
Holladay, J.D.3
-
25
-
-
38849097767
-
Hydrogen production via partial oxidation of methane with plasma-assisted catalysis
-
Y. Chao, C.-T. Huang, H.-M. Lee, and M.-B. Chang Hydrogen production via partial oxidation of methane with plasma-assisted catalysis Int. J. Hydrogen Energy 33 2008 664 671
-
(2008)
Int. J. Hydrogen Energy
, vol.33
, pp. 664-671
-
-
Chao, Y.1
Huang, C.-T.2
Lee, H.-M.3
Chang, M.-B.4
-
26
-
-
84884825270
-
The intensification technologies to water electrolysis for hydrogen production - A review
-
M. Wang, Z. Wang, X. Gong, and Z. Guo The intensification technologies to water electrolysis for hydrogen production - a review Renew. Sustain. Energy Rev. 29 2014 573 588
-
(2014)
Renew. Sustain. Energy Rev.
, vol.29
, pp. 573-588
-
-
Wang, M.1
Wang, Z.2
Gong, X.3
Guo, Z.4
-
27
-
-
0035739786
-
Titanium oxide nanotube arrays prepared by anodic oxidation
-
D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, and E.C. Dickey Titanium oxide nanotube arrays prepared by anodic oxidation J. Mater. Res. 16 2001 3331 3334
-
(2001)
J. Mater. Res.
, vol.16
, pp. 3331-3334
-
-
Gong, D.1
Grimes, C.A.2
Varghese, O.K.3
Hu, W.4
Singh, R.S.5
Chen, Z.6
Dickey, E.C.7
-
30
-
-
34948838556
-
2 nanotube arrays of 1000 μm length by anodization of titanium foil: Phenol red diffusion
-
2 nanotube arrays of 1000 μm length by anodization of titanium foil: phenol red diffusion J. Phys. Chem. C 111 2007 14992 14997
-
(2007)
J. Phys. Chem. C
, vol.111
, pp. 14992-14997
-
-
Paulose, M.1
Prakasam, H.E.2
Varghese, O.K.3
Peng, L.4
Popat, K.C.5
Mor, G.K.6
Desai, T.A.7
Grimes, C.A.8
-
32
-
-
70249099848
-
Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells
-
O.K. Varghese, M. Paulose, and C.A. Grimes Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells Nature Nanotech. 226 2009 592 597
-
(2009)
Nature Nanotech.
, vol.226
, pp. 592-597
-
-
Varghese, O.K.1
Paulose, M.2
Grimes, C.A.3
-
33
-
-
84878012773
-
2 nanotube photoelectrochemical solar cells
-
2 nanotube photoelectrochemical solar cells Electrochim. Acta 100 2013 220 225
-
(2013)
Electrochim. Acta
, vol.100
, pp. 220-225
-
-
Tsui, L.-K.1
Zangari, G.2
-
35
-
-
84899465724
-
2 O for photoelectrochemical, photocatalytic, and photovoltaic devices
-
2 O for photoelectrochemical, photocatalytic, and photovoltaic devices Electrochim. Acta 128 2014 341 348
-
(2014)
Electrochim. Acta
, vol.128
, pp. 341-348
-
-
Tsui, L.-K.1
Zangari, G.2
-
36
-
-
84964433370
-
2 nanotube arrays
-
2 nanotube arrays Appl. Surf. Sci. 351 2015 225 231
-
(2015)
Appl. Surf. Sci.
, vol.351
, pp. 225-231
-
-
Lv, J.1
Gao, H.2
Wang, H.3
Lu, X.4
Xu, G.5
Wang, D.6
Chen, Z.7
Zhang, X.8
Zheng, Z.9
Wu, Y.10
-
38
-
-
0028986421
-
Fabrication of ultrathin metallic membranes on ceramic supports by sputter deposition
-
V. Jayaraman, Y.S. Lin, M. Pakala, and R.Y. Lin Fabrication of ultrathin metallic membranes on ceramic supports by sputter deposition J. Membr. Sci. 99 1995 89 100
-
(1995)
J. Membr. Sci.
, vol.99
, pp. 89-100
-
-
Jayaraman, V.1
Lin, Y.S.2
Pakala, M.3
Lin, R.Y.4
-
39
-
-
34547381581
-
Effect of microstructure on hydrogen permeation through thermally stable, sputtered palladium-silver alloy membranes
-
L.S. McLeod, F.L. Degertekin, and A.G. Fedorov Effect of microstructure on hydrogen permeation through thermally stable, sputtered palladium-silver alloy membranes Appl. Phys. Lett. 90 2007 261905
-
(2007)
Appl. Phys. Lett.
, vol.90
, pp. 261905
-
-
McLeod, L.S.1
Degertekin, F.L.2
Fedorov, A.G.3
-
40
-
-
7444258054
-
High pressure hydrogen permeance of porous stainless steel coated with a thin palladium film via electroless plating
-
K.S. Rothenberger, A.V. Cugini, B.H. Howard, R.P. Killmeyer, M.V. Ciocco, B.D. Morreale, R.M. Enick, F. Bustamante, I.P. Mardilovich, and Y.H. Ma High pressure hydrogen permeance of porous stainless steel coated with a thin palladium film via electroless plating J. Membr. Sci. 244 2004 55 68
-
(2004)
J. Membr. Sci.
, vol.244
, pp. 55-68
-
-
Rothenberger, K.S.1
Cugini, A.V.2
Howard, B.H.3
Killmeyer, R.P.4
Ciocco, M.V.5
Morreale, B.D.6
Enick, R.M.7
Bustamante, F.8
Mardilovich, I.P.9
Ma, Y.H.10
-
41
-
-
78049231398
-
Preparation for defect-free self-supported Pd membranes by an electroless plating method
-
M. Mukaida, N. Takahashi, K. Hisamatsu, M. Ishitsuka, S. Hara, H. Suda, and K. Haraya Preparation for defect-free self-supported Pd membranes by an electroless plating method J. Membr. Sci. 365 2010 378 381
-
(2010)
J. Membr. Sci.
, vol.365
, pp. 378-381
-
-
Mukaida, M.1
Takahashi, N.2
Hisamatsu, K.3
Ishitsuka, M.4
Hara, S.5
Suda, H.6
Haraya, K.7
-
42
-
-
80053421366
-
High-purity hydrogen generation by ultraviolet illumination with the membrane composed of titanium dioxide nanotube array and Pd layer
-
M. Hattori, K. Noda, and K. Matsushige High-purity hydrogen generation by ultraviolet illumination with the membrane composed of titanium dioxide nanotube array and Pd layer Appl. Phys. Lett. 99 2011 123107
-
(2011)
Appl. Phys. Lett.
, vol.99
, pp. 123107
-
-
Hattori, M.1
Noda, K.2
Matsushige, K.3
-
43
-
-
0029375696
-
Electroless plating processes: Developing technologies for electroless nickel, palladium, and gold
-
D. Baudrand, and J. Bengston Electroless plating processes: developing technologies for electroless nickel, palladium, and gold Met. Finish. 93 1995 55 57
-
(1995)
Met. Finish.
, vol.93
, pp. 55-57
-
-
Baudrand, D.1
Bengston, J.2
-
44
-
-
0033640032
-
Room temperature electroless plating copper seed layer process for damascene interlevel metal structures
-
J.P. O'Kelly, K.F. Mongey, Y. Gobil, J. Torres, P.V. Kelly, and G.M. Crean Room temperature electroless plating copper seed layer process for damascene interlevel metal structures Microelectron. Eng. 50 2000 473 479
-
(2000)
Microelectron. Eng.
, vol.50
, pp. 473-479
-
-
O'Kelly, J.P.1
Mongey, K.F.2
Gobil, Y.3
Torres, J.4
Kelly, P.V.5
Crean, G.M.6
-
45
-
-
0032980486
-
Palladium composite membranes by electroless plating technique relationships between plating kinetics, film microstructure and membrane performance
-
K.L. Yeung, S.C. Christiansen, and A. Varma Palladium composite membranes by electroless plating technique relationships between plating kinetics, film microstructure and membrane performance J. Membr. Sci. 159 1999 107 122
-
(1999)
J. Membr. Sci.
, vol.159
, pp. 107-122
-
-
Yeung, K.L.1
Christiansen, S.C.2
Varma, A.3
-
46
-
-
0035865801
-
Effects of electroless plating chemistry on the synthesis of palladium membranes
-
Y.S. Cheng, and K.L. Yeung Effects of electroless plating chemistry on the synthesis of palladium membranes J. Membr. Sci. 182 2001 195 203
-
(2001)
J. Membr. Sci.
, vol.182
, pp. 195-203
-
-
Cheng, Y.S.1
Yeung, K.L.2
-
47
-
-
0010357276
-
-
A.V. Naumkin, A. Kraut-Vass, S.W. Gaarenstroom, C.J. Powell, NIST Standard Reference Database 20, Version 4.1 (http://srdata.nist.gov/xps/) (2012).
-
(2012)
NIST Standard Reference Database 20, Version 4.1
-
-
Naumkin, A.V.1
Kraut-Vass, A.2
Gaarenstroom, S.W.3
Powell, C.J.4
-
48
-
-
34250753067
-
Photocatalytic hydrogen production from liquid methanol and water
-
T. Kawai, and T. Sakata Photocatalytic hydrogen production from liquid methanol and water J. Chem. Soc. Chem. Commun. 1980 1980 694 695
-
(1980)
J. Chem. Soc. Chem. Commun.
, vol.1980
, pp. 694-695
-
-
Kawai, T.1
Sakata, T.2
-
49
-
-
6044224765
-
Semiconductor photooxidation of pollutants dissolved in water: A kinetic model for distinguishing between direct and indirect interfacial hole transfer. I. Photoelectrochemical experiments with polycrystalline anatase electrodes under current doubling and absence of recombination
-
T.L. Villarreal, R. Gomez, M. Neumann-Spallart, N. Alonso-Vante, and P. Salvador Semiconductor photooxidation of pollutants dissolved in water: a kinetic model for distinguishing between direct and indirect interfacial hole transfer. I. Photoelectrochemical experiments with polycrystalline anatase electrodes under current doubling and absence of recombination J. Phys. Chem. B 108 2004 15172 15181
-
(2004)
J. Phys. Chem. B
, vol.108
, pp. 15172-15181
-
-
Villarreal, T.L.1
Gomez, R.2
Neumann-Spallart, M.3
Alonso-Vante, N.4
Salvador, P.5
-
50
-
-
0017483007
-
Palladium alloys for hydrogen diffusion membranes: A review of high permeability materials
-
A.G. Knapton Palladium alloys for hydrogen diffusion membranes: a review of high permeability materials Platinum Met. Rev. 21 1977 44 50
-
(1977)
Platinum Met. Rev.
, vol.21
, pp. 44-50
-
-
Knapton, A.G.1
-
51
-
-
0029656510
-
Composite Pd/Ta metal membranes for hydrogen separation
-
N.M. Peachey, R.C. Snow, and R.C. Dye Composite Pd/Ta metal membranes for hydrogen separation J. Membr. Sci. 111 1996 123 133
-
(1996)
J. Membr. Sci.
, vol.111
, pp. 123-133
-
-
Peachey, N.M.1
Snow, R.C.2
Dye, R.C.3
|