-
1
-
-
84875364461
-
Early steps of double-strand break repair in Bacillus subtilis
-
Alonso, J.C., P.P. Cardenas, H. Sanchez, J. Hejna, Y. Suzuki, and K. Takeyasu. 2013. Early steps of double-strand break repair in Bacillus subtilis. DNA Repair (Amst.). 12:162-176. http://dx.doi.org/10.1016/j.dnarep.2012.12.005.
-
(2013)
DNA Repair (Amst.)
, vol.12
, pp. 162-176
-
-
Alonso, J.C.1
Cardenas, P.P.2
Sanchez, H.3
Hejna, J.4
Suzuki, Y.5
Takeyasu, K.6
-
2
-
-
51549087758
-
A polymeric protein anchors the chromosomal origin/ParB complex at a bacterial cell pole
-
Bowman, G.R., L.R. Comolli, J. Zhu, M. Eckart, M. Koenig, K.H. Downing, W.E. Moerner, T. Earnest, and L. Shapiro. 2008. A polymeric protein anchors the chromosomal origin/ParB complex at a bacterial cell pole. Cell. 134:945-955. http://dx.doi.org/10.1016/j.cell.2008.07.015.
-
(2008)
Cell
, vol.134
, pp. 945-955
-
-
Bowman, G.R.1
Comolli, L.R.2
Zhu, J.3
Eckart, M.4
Koenig, M.5
Downing, K.H.6
Moerner, W.E.7
Earnest, T.8
Shapiro, L.9
-
3
-
-
79551629682
-
Spatial gradient of protein phosphorylation underlies replicative asymmetry in a bacterium
-
Chen, Y.E., C. Tropini, K. Jonas, C.G. Tsokos, K.C. Huang, and M.T. Laub. 2011. Spatial gradient of protein phosphorylation underlies replicative asymmetry in a bacterium. Proc. Natl. Acad. Sci. USA. 108:1052-1057. http://dx.doi.org/10.1073/pnas.1015397108.
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 1052-1057
-
-
Chen, Y.E.1
Tropini, C.2
Jonas, K.3
Tsokos, C.G.4
Huang, K.C.5
Laub, M.T.6
-
4
-
-
0035695023
-
Recombination at double-strand breaks and DNA ends: conserved mechanisms from phage to humans
-
Cromie, G.A., J.C. Connelly, and D.R.F. Leach. 2001. Recombination at double-strand breaks and DNA ends: conserved mechanisms from phage to humans. Mol. Cell. 8:1163-1174. http://dx.doi.org/10.1016/S1097-2765(01)00419-1.
-
(2001)
Mol. Cell
, vol.8
, pp. 1163-1174
-
-
Cromie, G.A.1
Connelly, J.C.2
Leach, D.R.F.3
-
5
-
-
57349157777
-
RecBCD enzyme and the repair of double-stranded DNA breaks
-
Dillingham, M.S., and S.C. Kowalczykowski. 2008. RecBCD enzyme and the repair of double-stranded DNA breaks. Microbiol. Mol. Biol. Rev. 72:642-671. http://dx.doi.org/10.1128/MMBR.00020-08.
-
(2008)
Microbiol. Mol. Biol. Rev
, vol.72
, pp. 642-671
-
-
Dillingham, M.S.1
Kowalczykowski, S.C.2
-
6
-
-
84860500314
-
Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery
-
Dion, V., V. Kalck, C. Horigome, B.D. Towbin, and S.M. Gasser. 2012. Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery. Nat. Cell Biol. 14:502-509. http://dx.doi.org/10.1038/ncb2465.
-
(2012)
Nat. Cell Biol
, vol.14
, pp. 502-509
-
-
Dion, V.1
Kalck, V.2
Horigome, C.3
Towbin, B.D.4
Gasser, S.M.5
-
7
-
-
51549102573
-
A self-associating protein critical for chromosome attachment, division, and polar organization in caulobacter
-
Ebersbach, G., A. Briegel, G.J. Jensen, and C. Jacobs-Wagner. 2008. A self-associating protein critical for chromosome attachment, division, and polar organization in caulobacter. Cell. 134:956-968. http://dx.doi.org/10.1016/j.cell.2008.07.016.
-
(2008)
Cell
, vol.134
, pp. 956-968
-
-
Ebersbach, G.1
Briegel, A.2
Jensen, G.J.3
Jacobs-Wagner, C.4
-
8
-
-
0025888266
-
Genetics of Caulobacter crescentus
-
Ely, B. 1991. Genetics of Caulobacter crescentus. Methods Enzymol. 204:372-384. http://dx.doi.org/10.1016/0076-6879(91)04019-K.
-
(1991)
Methods Enzymol
, vol.204
, pp. 372-384
-
-
Ely, B.1
-
9
-
-
35449007348
-
Aeons of distress: an evolutionary perspective on the bacterial SOS response
-
Erill, I., S. Campoy, and J. Barbé. 2007. Aeons of distress: an evolutionary perspective on the bacterial SOS response. FEMS Microbiol. Rev. 31:637-656. http://dx.doi.org/10.1111/j.1574-6976.2007.00082.x.
-
(2007)
FEMS Microbiol. Rev
, vol.31
, pp. 637-656
-
-
Erill, I.1
Campoy, S.2
Barbé, J.3
-
10
-
-
84877694848
-
Four-dimensional imaging of E. coli nucleoid organization and dynamics in living cells
-
Fisher, J.K., A. Bourniquel, G. Witz, B. Weiner, M. Prentiss, and N. Kleckner. 2013. Four-dimensional imaging of E. coli nucleoid organization and dynamics in living cells. Cell. 153:882-895. http://dx.doi.org/10.1016/j.cell.2013.04.006.
-
(2013)
Cell
, vol.153
, pp. 882-895
-
-
Fisher, J.K.1
Bourniquel, A.2
Witz, G.3
Weiner, B.4
Prentiss, M.5
Kleckner, N.6
-
11
-
-
84857118715
-
Single-molecule imaging of DNA pairing by RecA reveals a three-dimensional homology search
-
Forget, A.L., and S.C. Kowalczykowski. 2012. Single-molecule imaging of DNA pairing by RecA reveals a three-dimensional homology search. Nature. 482:423-427. http://dx.doi.org/10.1038/nature10782.
-
(2012)
Nature
, vol.482
, pp. 423-427
-
-
Forget, A.L.1
Kowalczykowski, S.C.2
-
12
-
-
33644764886
-
Bacterial birth scar proteins mark future flagellum assembly site
-
Huitema, E., S. Pritchard, D. Matteson, S.K. Radhakrishnan, and P.H. Viollier. 2006. Bacterial birth scar proteins mark future flagellum assembly site. Cell. 124:1025-1037. http://dx.doi.org/10.1016/j.cell.2006.01.019.
-
(2006)
Cell
, vol.124
, pp. 1025-1037
-
-
Huitema, E.1
Pritchard, S.2
Matteson, D.3
Radhakrishnan, S.K.4
Viollier, P.H.5
-
13
-
-
79960180892
-
Modularity of the bacterial cell cycle enables independent spatial and temporal control of DNA replication
-
Jonas, K., Y.E. Chen, and M.T. Laub. 2011. Modularity of the bacterial cell cycle enables independent spatial and temporal control of DNA replication. Curr. Biol. 21:1092-1101. http://dx.doi.org/10.1016/j.cub.2011.05.040.
-
(2011)
Curr. Biol
, vol.21
, pp. 1092-1101
-
-
Jonas, K.1
Chen, Y.E.2
Laub, M.T.3
-
14
-
-
79952591477
-
Escherichia coli sister chromosome separation includes an abrupt global transition with concomitant release of late-splitting intersister snaps
-
Joshi, M.C., A. Bourniquel, J. Fisher, B.T. Ho, D. Magnan, N. Kleckner, and D. Bates. 2011. Escherichia coli sister chromosome separation includes an abrupt global transition with concomitant release of late-splitting intersister snaps. Proc. Natl. Acad. Sci. USA. 108:2765-2770. http://dx.doi.org/10.1073/pnas.1019593108.
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 2765-2770
-
-
Joshi, M.C.1
Bourniquel, A.2
Fisher, J.3
Ho, B.T.4
Magnan, D.5
Kleckner, N.6
Bates, D.7
-
15
-
-
23744446306
-
Dynamic formation of RecA filaments at DNA double strand break repair centers in live cells
-
Kidane, D., and P.L. Graumann. 2005. Dynamic formation of RecA filaments at DNA double strand break repair centers in live cells. J. Cell Biol. 170:357-366. http://dx.doi.org/10.1083/jcb.200412090.
-
(2005)
J. Cell Biol
, vol.170
, pp. 357-366
-
-
Kidane, D.1
Graumann, P.L.2
-
16
-
-
84860777141
-
Localized dimerization and nucleoid binding drive gradient formation by the bacterial cell division inhibitor MipZ
-
Kiekebusch, D., K.A. Michie, L.-O. Essen, J. Löwe, and M. Thanbichler. 2012. Localized dimerization and nucleoid binding drive gradient formation by the bacterial cell division inhibitor MipZ. Mol. Cell. 46:245-259. http://dx.doi.org/10.1016/j.molcel.2012.03.004.
-
(2012)
Mol. Cell
, vol.46
, pp. 245-259
-
-
Kiekebusch, D.1
Michie, K.A.2
Essen, L.-O.3
Löwe, J.4
Thanbichler, M.5
-
17
-
-
84910679569
-
The bacterial nucleoid: nature, dynamics and sister segregation
-
Kleckner, N., J.K. Fisher, M. Stouf, M.A. White, D. Bates, and G. Witz. 2014. The bacterial nucleoid: nature, dynamics and sister segregation. Curr. Opin. Microbiol. 22:127-137. http://dx.doi.org/10.1016/j.mib.2014.10.001.
-
(2014)
Curr. Opin. Microbiol
, vol.22
, pp. 127-137
-
-
Kleckner, N.1
Fisher, J.K.2
Stouf, M.3
White, M.A.4
Bates, D.5
Witz, G.6
-
18
-
-
84898995018
-
Structural basis for translocation by AddAB helicase-nuclease and its arrest at? sites
-
Krajewski, W.W., X. Fu, M. Wilkinson, N.B. Cronin, M.S. Dillingham, and D.B. Wigley. 2014. Structural basis for translocation by AddAB helicase-nuclease and its arrest at ? sites. Nature. 508:416-419. http://dx.doi.org/10.1038/nature13037.
-
(2014)
Nature
, vol.508
, pp. 416-419
-
-
Krajewski, W.W.1
Fu, X.2
Wilkinson, M.3
Cronin, N.B.4
Dillingham, M.S.5
Wigley, D.B.6
-
19
-
-
84880018556
-
Spatiotemporal control of PopZ localization through cell cycle-coupled multimerization
-
Laloux, G., and C. Jacobs-Wagner. 2013. Spatiotemporal control of PopZ localization through cell cycle-coupled multimerization. J. Cell Biol. 201:827-841. http://dx.doi.org/10.1083/jcb.201303036.
-
(2013)
J. Cell Biol
, vol.201
, pp. 827-841
-
-
Laloux, G.1
Jacobs-Wagner, C.2
-
20
-
-
33644753905
-
A landmark protein essential for establishing and perpetuating the polarity of a bacterial cell
-
Lam, H., W.B. Schofield, and C. Jacobs-Wagner. 2006. A landmark protein essential for establishing and perpetuating the polarity of a bacterial cell. Cell. 124:1011-1023. http://dx.doi.org/10.1016/j.cell.2005.12.040
-
(2006)
Cell
, vol.124
, pp. 1011-1023
-
-
Lam, H.1
Schofield, W.B.2
Jacobs-Wagner, C.3
-
21
-
-
84907981605
-
New approaches to understanding the spatial organization of bacterial genomes
-
Le, T.B., and M.T. Laub. 2014. New approaches to understanding the spatial organization of bacterial genomes. Curr. Opin. Microbiol. 22:15-21. http://dx.doi.org/10.1016/j.mib.2014.09.014
-
(2014)
Curr. Opin. Microbiol
, vol.22
, pp. 15-21
-
-
Le, T.B.1
Laub, M.T.2
-
22
-
-
84887322004
-
High-resolution mapping of the spatial organization of a bacterial chromosome
-
Le, T.B.K., M.V. Imakaev, L.A. Mirny, and M.T. Laub. 2013. High-resolution mapping of the spatial organization of a bacterial chromosome. Science. 342:731-734. http://dx.doi.org/10.1126/science.1242059.
-
(2013)
Science
, vol.342
, pp. 731-734
-
-
Le, T.B.K.1
Imakaev, M.V.2
Mirny, L.A.3
Laub, M.T.4
-
23
-
-
84865717172
-
DNA repair and genome maintenance in Bacillus subtilis
-
Lenhart, J.S., J.W. Schroeder, B.W. Walsh, and L.A. Simmons. 2012. DNA repair and genome maintenance in Bacillus subtilis. Microbiol. Mol. Biol. Rev. 76:530-564. http://dx.doi.org/10.1128/MMBR.05020-11.
-
(2012)
Microbiol. Mol. Biol. Rev
, vol.76
, pp. 530-564
-
-
Lenhart, J.S.1
Schroeder, J.W.2
Walsh, B.W.3
Simmons, L.A.4
-
24
-
-
84893945960
-
RecA bundles mediate homology pairing between distant sisters during DNA break repair
-
Lesterlin, C., G. Ball, L. Schermelleh, and D.J. Sherratt. 2014. RecA bundles mediate homology pairing between distant sisters during DNA break repair. Nature. 506:249-253. http://dx.doi.org/10.1038/nature12868.
-
(2014)
Nature
, vol.506
, pp. 249-253
-
-
Lesterlin, C.1
Ball, G.2
Schermelleh, L.3
Sherratt, D.J.4
-
25
-
-
84902324665
-
Evidence for a DNA-relay mechanism in ParABSmediated chromosome segregation
-
Lim, H.C., I.V. Surovtsev, B.G. Beltran, F. Huang, J. Bewersdorf, and C. Jacobs-Wagner. 2014. Evidence for a DNA-relay mechanism in ParABSmediated chromosome segregation. eLife. 3:e02758. http://dx.doi.org/10.7554/eLife.02758.
-
(2014)
eLife
, vol.3
-
-
Lim, H.C.1
Surovtsev, I.V.2
Beltran, B.G.3
Huang, F.4
Bewersdorf, J.5
Jacobs-Wagner, C.6
-
26
-
-
36749031086
-
Distribution of centromere-like parS sites in bacteria: insights from comparative genomics
-
Livny, J., Y. Yamaichi, and M.K. Waldor. 2007. Distribution of centromere-like parS sites in bacteria: insights from comparative genomics. J. Bacteriol. 189:8693-8703. http://dx.doi.org/10.1128/JB.01239-07.
-
(2007)
J. Bacteriol
, vol.189
, pp. 8693-8703
-
-
Livny, J.1
Yamaichi, Y.2
Waldor, M.K.3
-
27
-
-
84860517399
-
Increased chromosome mobility facilitates homology search during recombination
-
Miné-Hattab, J., and R. Rothstein. 2012. Increased chromosome mobility facilitates homology search during recombination. Nat. Cell Biol. 14:510-517. http://dx.doi.org/10.1038/ncb2472.
-
(2012)
Nat. Cell Biol
, vol.14
, pp. 510-517
-
-
Miné-Hattab, J.1
Rothstein, R.2
-
28
-
-
79959677792
-
A DNA damage checkpoint in Caulobacter crescentus inhibits cell division through a direct interaction with FtsW
-
Modell, J.W., A.C. Hopkins, and M.T. Laub. 2011. A DNA damage checkpoint in Caulobacter crescentus inhibits cell division through a direct interaction with FtsW. Genes Dev. 25:1328-1343. http://dx.doi.org/10.1101/gad.2038911.
-
(2011)
Genes Dev
, vol.25
, pp. 1328-1343
-
-
Modell, J.W.1
Hopkins, A.C.2
Laub, M.T.3
-
29
-
-
84920468768
-
A DNA damage-induced, SOS-independent checkpoint regulates cell division in Caulobacter crescentus
-
Modell, J.W., T.K. Kambara, B.S. Perchuk, and M.T. Laub. 2014. A DNA damage-induced, SOS-independent checkpoint regulates cell division in Caulobacter crescentus. PLoS Biol. 12:e1001977. http://dx.doi.org/10.1371/journal.pbio.1001977.
-
(2014)
PLoS Biol
, vol.12
-
-
Modell, J.W.1
Kambara, T.K.2
Perchuk, B.S.3
Laub, M.T.4
-
30
-
-
0035164022
-
The chromosome partitioning protein, ParB, is required for cytokinesis in Caulobacter crescentus
-
Mohl, D.A., J. Easter Jr., and J.W. Gober. 2001. The chromosome partitioning protein, ParB, is required for cytokinesis in Caulobacter crescentus. Mol. Microbiol. 42:741-755. http://dx.doi.org/10.1046/j.1365-2958.2001.02643.x.
-
(2001)
Mol. Microbiol
, vol.42
, pp. 741-755
-
-
Mohl, D.A.1
Easter, J.2
Gober, J.W.3
-
31
-
-
0025357616
-
Purification and characterization of the in vitro activity of I-Sce I, a novel and highly specific endonuclease encoded by a group I intron
-
Monteilhet, C., A. Perrin, A. Thierry, L. Colleaux, and B. Dujon. 1990. Purification and characterization of the in vitro activity of I-Sce I, a novel and highly specific endonuclease encoded by a group I intron. Nucleic Acids Res. 18:1407-1413. http://dx.doi.org/10.1093/nar/18.6.1407.
-
(1990)
Nucleic Acids Res
, vol.18
, pp. 1407-1413
-
-
Monteilhet, C.1
Perrin, A.2
Thierry, A.3
Colleaux, L.4
Dujon, B.5
-
32
-
-
33748507103
-
Progressive segregation of the Escherichia coli chromosome
-
Nielsen, H.J., Y. Li, B. Youngren, F.G. Hansen, and S. Austin. 2006. Progressive segregation of the Escherichia coli chromosome. Mol. Microbiol. 61:383-393. http://dx.doi.org/10.1111/j.1365-2958.2006.05245.x.
-
(2006)
Mol. Microbiol
, vol.61
, pp. 383-393
-
-
Nielsen, H.J.1
Li, Y.2
Youngren, B.3
Hansen, F.G.4
Austin, S.5
-
33
-
-
84870532082
-
Structural and functional characterization of an SMC-like protein RecN: new insights into double-strand break repair
-
Pellegrino, S., J. Radzimanowski, D. de Sanctis, E. Boeri Erba, S. McSweeney, and J. Timmins. 2012. Structural and functional characterization of an SMC-like protein RecN: new insights into double-strand break repair. Structure. 20:2076-2089. http://dx.doi.org/10.1016/j.str.2012.09.010.
-
(2012)
Structure
, vol.20
, pp. 2076-2089
-
-
Pellegrino, S.1
Radzimanowski, J.2
de Sanctis, D.3
Boeri Erba, E.4
McSweeney, S.5
Timmins, J.6
-
34
-
-
34249789279
-
Spontaneous DNA breakage in single living Escherichia coli cells
-
Pennington, J.M., and S.M. Rosenberg. 2007. Spontaneous DNA breakage in single living Escherichia coli cells. Nat. Genet. 39:797-802. http://dx.doi.org/10.1038/ng2051.
-
(2007)
Nat. Genet
, vol.39
, pp. 797-802
-
-
Pennington, J.M.1
Rosenberg, S.M.2
-
35
-
-
77955175864
-
A spindle-like apparatus guides bacterial chromosome segregation
-
Ptacin, J.L., S.F. Lee, E.C. Garner, E. Toro, M. Eckart, L.R. Comolli, W.E. Moerner, and L. Shapiro. 2010. A spindle-like apparatus guides bacterial chromosome segregation. Nat. Cell Biol. 12:791-798. http://dx.doi.org/10.1038/ncb2083.
-
(2010)
Nat. Cell Biol
, vol.12
, pp. 791-798
-
-
Ptacin, J.L.1
Lee, S.F.2
Garner, E.C.3
Toro, E.4
Eckart, M.5
Comolli, L.R.6
Moerner, W.E.7
Shapiro, L.8
-
36
-
-
84900510259
-
Bacterial scaffold directspole-specific centromere segregation
-
Ptacin, J.L., A. Gahlmann, G.R. Bowman, A.M. Perez, A.R.S. von Diezmann, M.R. Eckart, W.E. Moerner, and L. Shapiro. 2014. Bacterial scaffold directspole-specific centromere segregation. Proc. Natl. Acad. Sci. USA. 111:E2046-E2055. http://dx.doi.org/10.1073/pnas.1405188111.
-
(2014)
Proc. Natl. Acad. Sci. USA
, vol.111
, pp. E2046-E2055
-
-
Ptacin, J.L.1
Gahlmann, A.2
Bowman, G.R.3
Perez, A.M.4
von Diezmann, A.R.S.5
Eckart, M.R.6
Moerner, W.E.7
Shapiro, L.8
-
37
-
-
84863533607
-
Adaptor-dependent degradation of a cell-cycle regulator uses a unique substrate architecture
-
Rood, K.L., N.E. Clark, P.R. Stoddard, S.C. Garman, and P. Chien. 2012. Adaptor-dependent degradation of a cell-cycle regulator uses a unique substrate architecture. Structure. 20:1223-1232. http://dx.doi.org/10.1016/j.str.2012.04.019.
-
(2012)
Structure
, vol.20
, pp. 1223-1232
-
-
Rood, K.L.1
Clark, N.E.2
Stoddard, P.R.3
Garman, S.C.4
Chien, P.5
-
38
-
-
0021339432
-
Signal of induction of recA protein in E. coli
-
Salles, B., and M. Defais. 1984. Signal of induction of recA protein in E. coli. Mutat. Res. 131:53-59.
-
(1984)
Mutat. Res
, vol.131
, pp. 53-59
-
-
Salles, B.1
Defais, M.2
-
39
-
-
0025361131
-
Nature of the SOS-inducing signal in Escherichia coli. The involvement of DNA replication
-
Sassanfar, M., and J.W. Roberts. 1990. Nature of the SOS-inducing signal in Escherichia coli. The involvement of DNA replication. J. Mol. Biol. 212:79-96. http://dx.doi.org/10.1016/0022-2836(90)90306-7.
-
(1990)
J. Mol. Biol
, vol.212
, pp. 79-96
-
-
Sassanfar, M.1
Roberts, J.W.2
-
40
-
-
77956801105
-
Cell cycle coordination and regulation of bacterial chromosome segregation dynamics by polarly localized proteins
-
Schofield, W.B., H.C. Lim, and C. Jacobs-Wagner. 2010. Cell cycle coordination and regulation of bacterial chromosome segregation dynamics by polarly localized proteins. EMBO J. 29:3068-3081. http://dx.doi.org/10.1038/emboj.2010.207.
-
(2010)
EMBO J
, vol.29
, pp. 3068-3081
-
-
Schofield, W.B.1
Lim, H.C.2
Jacobs-Wagner, C.3
-
41
-
-
77956294329
-
Caulobacter chromosome segregation is an ordered multistep process
-
Shebelut, C.W., J.M. Guberman, S. van Teeffelen, A.A. Yakhnina, and Z. Gitai. 2010. Caulobacter chromosome segregation is an ordered multistep process. Proc. Natl. Acad. Sci. USA. 107:14194-14198. http://dx.doi.org/10.1073/pnas.1005274107.
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 14194-14198
-
-
Shebelut, C.W.1
Guberman, J.M.2
van Teeffelen, S.3
Yakhnina, A.A.4
Gitai, Z.5
-
42
-
-
84887397458
-
Engineered proteins detect spontaneous DNA breakage in human and bacterial cells
-
Shee, C., B.D. Cox, F. Gu, E.M. Luengas, M.C. Joshi, L.-Y. Chiu, D. Magnan, J.A. Halliday, R.L. Frisch, J.L. Gibson, et al. 2013. Engineered proteins detect spontaneous DNA breakage in human and bacterial cells. eLife. 2:e01222. http://dx.doi.org/10.7554/eLife.01222.
-
(2013)
eLife
, vol.2
-
-
Shee, C.1
Cox, B.D.2
Gu, F.3
Luengas, E.M.4
Joshi, M.C.5
Chiu, L.-Y.6
Magnan, D.7
Halliday, J.A.8
Frisch, R.L.9
Gibson, J.L.10
-
43
-
-
33846586523
-
Replication is required for the RecA localization response to DNA damage in Bacillus subtilis
-
Simmons, L.A., A.D. Grossman, and G.C. Walker. 2007. Replication is required for the RecA localization response to DNA damage in Bacillus subtilis. Proc. Natl. Acad. Sci. USA. 104:1360-1365. http://dx.doi.org/10.1073/pnas.0607123104.
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 1360-1365
-
-
Simmons, L.A.1
Grossman, A.D.2
Walker, G.C.3
-
44
-
-
60849101060
-
Comparison of responses to double-strand breaks between Escherichia coli and Bacillus subtilis reveals different requirements for SOS induction
-
Simmons, L.A., A.I. Goranov, H. Kobayashi, B.W. Davies, D.S. Yuan, A.D. Grossman, and G.C. Walker. 2009. Comparison of responses to double-strand breaks between Escherichia coli and Bacillus subtilis reveals different requirements for SOS induction. J. Bacteriol. 191:1152-1161. http://dx.doi.org/10.1128/JB.01292-08.
-
(2009)
J. Bacteriol
, vol.191
, pp. 1152-1161
-
-
Simmons, L.A.1
Goranov, A.I.2
Kobayashi, H.3
Davies, B.W.4
Yuan, D.S.5
Grossman, A.D.6
Walker, G.C.7
-
45
-
-
26444481955
-
Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis
-
Skerker, J.M., M.S. Prasol, B.S. Perchuk, E.G. Biondi, and M.T. Laub. 2005. Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis. PLoS Biol. 3:e334. http://dx.doi.org/10.1371/journal.pbio.0030334.
-
(2005)
PLoS Biol
, vol.3
-
-
Skerker, J.M.1
Prasol, M.S.2
Perchuk, B.S.3
Biondi, E.G.4
Laub, M.T.5
-
46
-
-
79955024764
-
Highthroughput, subpixel precision analysis of bacterial morphogenesis and intracellular spatio-temporal dynamics
-
Sliusarenko, O., J. Heinritz, T. Emonet, and C. Jacobs-Wagner. 2011. Highthroughput, subpixel precision analysis of bacterial morphogenesis and intracellular spatio-temporal dynamics. Mol. Microbiol. 80:612-627. http://dx.doi.org/10.1111/j.1365-2958.2011.07579.x.
-
(2011)
Mol. Microbiol
, vol.80
, pp. 612-627
-
-
Sliusarenko, O.1
Heinritz, J.2
Emonet, T.3
Jacobs-Wagner, C.4
-
47
-
-
84873526052
-
There and back again: new single-molecule insights in the motion of DNA repair proteins
-
Spies, M. 2013. There and back again: new single-molecule insights in the motion of DNA repair proteins. Curr. Opin. Struct. Biol. 23:154-160. http://dx.doi.org/10.1016/j.sbi.2012.11.008.
-
(2013)
Curr. Opin. Struct. Biol
, vol.23
, pp. 154-160
-
-
Spies, M.1
-
48
-
-
80755187806
-
Double-strand break end resection and repair pathway choice
-
Symington, L.S., and J. Gautier. 2011. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 45:247-271. http://dx.doi.org/10.1146/annurev-genet-110410-132435.
-
(2011)
Annu. Rev. Genet
, vol.45
, pp. 247-271
-
-
Symington, L.S.1
Gautier, J.2
-
49
-
-
33745699284
-
MipZ, a spatial regulator coordinating chromosome segregation with cell division in Caulobacter
-
Thanbichler, M., and L. Shapiro. 2006. MipZ, a spatial regulator coordinating chromosome segregation with cell division in Caulobacter. Cell. 126:147-162. http://dx.doi.org/10.1016/j.cell.2006.05.038.
-
(2006)
Cell
, vol.126
, pp. 147-162
-
-
Thanbichler, M.1
Shapiro, L.2
-
50
-
-
36749049715
-
A comprehensive set of plasmids for vanillate-and xylose-inducible gene expression in Caulobacter crescentus
-
Thanbichler, M., A.A. Iniesta, and L. Shapiro. 2007. A comprehensive set of plasmids for vanillate-and xylose-inducible gene expression in Caulobacter crescentus. Nucleic Acids Res. 35:e137. http://dx.doi.org/10.1093/nar/gkm818.
-
(2007)
Nucleic Acids Res
, vol.35
-
-
Thanbichler, M.1
Iniesta, A.A.2
Shapiro, L.3
-
51
-
-
55749095037
-
Caulobacter requires a dedicated mechanism to initiate chromosome segregation
-
Toro, E., S.-H. Hong, H.H. McAdams, and L. Shapiro. 2008. Caulobacter requires a dedicated mechanism to initiate chromosome segregation. Proc. Natl. Acad. Sci. USA. 105:15435-15440. http://dx.doi.org/10.1073/pnas.0807448105.
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 15435-15440
-
-
Toro, E.1
Hong, S.-H.2
McAdams, H.H.3
Shapiro, L.4
-
52
-
-
3042548402
-
Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication
-
Viollier, P.H., M. Thanbichler, P.T. McGrath, L. West, M. Meewan, H.H. McAdams, and L. Shapiro. 2004. Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc. Natl. Acad. Sci. USA. 101:9257-9262. http://dx.doi.org/10.1073/pnas.0402606101.
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, pp. 9257-9262
-
-
Viollier, P.H.1
Thanbichler, M.2
McGrath, P.T.3
West, L.4
Meewan, M.5
McAdams, H.H.6
Shapiro, L.7
-
53
-
-
84874192725
-
Organization and segregation of bacterial chromosomes
-
Wang, X., P. Montero Llopis, and D.Z. Rudner. 2013. Organization and segregation of bacterial chromosomes. Nat. Rev. Genet. 14:191-203. http://dx.doi.org/10.1038/nrg3375.
-
(2013)
Nat. Rev. Genet
, vol.14
, pp. 191-203
-
-
Wang, X.1
Montero Llopis, P.2
Rudner, D.Z.3
-
54
-
-
84871340015
-
Bacterial DNA repair: recent insights into the mechanism of RecBCD, AddAB and AdnAB
-
Wigley, D.B. 2013. Bacterial DNA repair: recent insights into the mechanism of RecBCD, AddAB and AdnAB. Nat. Rev. Microbiol. 11:9-13. http://dx.doi.org/10.1038/nrmicro2917.
-
(2013)
Nat. Rev. Microbiol
, vol.11
, pp. 9-13
-
-
Wigley, D.B.1
|