-
1
-
-
0000492326
-
Learning from noisy examples
-
D. Angluin and P. Laird. Learning from noisy examples. Machine Learning, 2(4):343-370, 1988.
-
(1988)
Machine Learning
, vol.2
, Issue.4
, pp. 343-370
-
-
Angluin, D.1
Laird, P.2
-
3
-
-
0000450110
-
Pac-learning recursive logic programs: Efficient algorithms
-
W. W. Cohen. Pac-learning recursive logic programs: efficient algorithms. J. AI Research, 2:501-539, 1995.
-
(1995)
J. AI Research
, vol.2
, pp. 501-539
-
-
Cohen, W.W.1
-
4
-
-
0000450112
-
Pac-learning recursive logic programs: Negative results
-
W. W. Cohen. Pac-learning recursive logic programs: negative results. J. AI Research, 2:541-573, 1995.
-
(1995)
J. AI Research
, vol.2
, pp. 541-573
-
-
Cohen, W.W.1
-
5
-
-
0027805202
-
Statistical queries and faulty PAC oracles
-
ACM Press, New York, NY
-
S. E. Decatur. Statistical queries and faulty PAC oracles. In Proc. 6th Annu. Workshop on Comput. Learning Theory, pages 262-268. ACM Press, New York, NY, 1993.
-
(1993)
Proc. 6Th Annu. Workshop on Comput. Learning Theory
, pp. 262-268
-
-
Decatur, S.E.1
-
7
-
-
0026972455
-
PAC-learnability of determinate logic programs
-
ACM Press, New York, NY
-
S. Dzeroski, S. Muggleton, and S. Russell. PAC-learnability of determinate logic programs. In Proc. 5th Annu. Workshop on Comput. Learning Theory, pages 128135. ACM Press, New York, NY, 1992.
-
(1992)
Proc. 5Th Annu. Workshop on Comput. Learning Theory
, pp. 128135
-
-
Dzeroski, S.1
Muggleton, S.2
Russell, S.3
-
9
-
-
0013411860
-
Can PAC learning algorithms tolerate random attribute noise?
-
S. A. Goldman and R. H. Sloan. Can PAC learning algorithms tolerate random attribute noise? Algorithmica, 14:70-84, 1995.
-
(1995)
Algorithmica
, vol.14
, pp. 70-84
-
-
Goldman, S.A.1
Sloan, R.H.2
-
10
-
-
84947403595
-
Probability inequalities for sums of bounded random variables
-
W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58(301):13-30, Mar. 1963.
-
(1963)
Journal of the American Statistical Association
, vol.58
, Issue.301
, pp. 13-30
-
-
Hoeffding, W.1
-
11
-
-
0004926457
-
Learning logic programs with structured background knowledge
-
InL. De Raedt, editor, (ed. L. De Raedt). IOS Press, (IOS Frontiers in AI and Appl.)
-
T. Horvath and G. Turan. Learning logic programs with structured background knowledge. InL. De Raedt, editor, 5th Int. Workshop on Inductive Logic Programming, pages 53-76, 1995. Also in Advances in Inductive Logic Programming (ed. L. De Raedt). IOS Press, 1996, pages 172-191. (IOS Frontiers in AI and Appl.).
-
(1996)
5Th Int. Workshop on Inductive Logic Programming, Pages 53-76, 1995. Also in Advances in Inductive Logic Programming
, pp. 172-191
-
-
Horvath, T.1
Turan, G.2
-
12
-
-
0027188175
-
Efficient noise-tolerant learning from statistical queries
-
ACM Press, New York, NY
-
M. Kearns. Efficient noise-tolerant learning from statistical queries. In Proc. 25th Annu. ACM Sympos. Theory Comput., pages 392-401. ACM Press, New York, NY, 1993.
-
(1993)
Proc. 25Th Annu. ACM Sympos. Theory Comput
, pp. 392-401
-
-
Kearns, M.1
-
13
-
-
0027640858
-
Learning in the presence of malicious errors
-
M. Kearns and M. Li. Learning in the presence of malicious errors. SIAM J. Comput., 22:807-837, 1993.
-
(1993)
SIAM J. Comput
, vol.22
, pp. 807-837
-
-
Kearns, M.1
Li, M.2
-
15
-
-
84880669849
-
Inductive learning of relations from noisy examples
-
In S. H. Muggleton, editor, London, Academic Press
-
N. Lavrac and S. Dzeroski. Inductive learning of relations from noisy examples. In S. H. Muggleton, editor, Inductive Logic Programming, pages 495-514, London, 1992. Academic Press.
-
(1992)
Inductive Logic Programming
, pp. 495-514
-
-
Lavrac, N.1
Dzeroski, S.2
-
17
-
-
0001953060
-
Handling imperfect data in inductive logic programming
-
L. De Raedt, editor, IOS Press
-
N. Lavrac, S. Dzeroski, and I. Bratko. Handling imperfect data in inductive logic programming. In L. De Raedt, editor, Advances in Inductive Logic Programming, pages 48-64. IOS Press, 1996.
-
(1996)
Advances in Inductive Logic Programming
, pp. 48-64
-
-
Lavrac, N.1
Dzeroski, S.2
Bratko, I.3
-
19
-
-
0002304628
-
Efficient induction of logic programs
-
S. Muggleton, editor, Inductive Logic Programming, Academic Press
-
S. Muggleton and C. Feng. Efficient induction of logic programs. In S. Muggleton, editor, Inductive Logic Programming, pages 281-298. Academic Press, 1992.
-
(1992)
Inductive Logic Programming
, pp. 281-298
-
-
Muggleton, S.1
Feng, C.2
-
21
-
-
0000607171
-
Four types of noise in data for PAC learning
-
R. H. Sloan. Four types of noise in data for PAC learning. Inf. Process. Lett., 54:157-162, 1995.
-
(1995)
Inf. Process. Lett
, vol.54
, pp. 157-162
-
-
Sloan, R.H.1
-
22
-
-
0347999457
-
Distinguishing exceptions from noise in non-monotonic learning
-
Tokyo, Japan, ICOT TM-1182
-
A. Srinivasan, S. H. Muggleton, and M. Bain. Distinguishing exceptions from noise in non-monotonic learning. In Proc. Second International Workshop on Inductive Logic Programming, Tokyo, Japan, 1992. ICOT TM-1182.
-
(1992)
Proc. Second International Workshop on Inductive Logic Programming
-
-
Srinivasan, A.1
Muggleton, S.H.2
Bain, M.3
-
23
-
-
0002202594
-
Learning disjunctions of conjunctions
-
Los Angeles, California, 1985. International Joint Committee for Artificial Intelligence
-
L. G. Valiant. Learning disjunctions of conjunctions. In Proceedings of the 9th International Joint Conference on Artificial Intelligence, vol. 1, pages 560-566, Los Angeles, California, 1985. International Joint Committee for Artificial Intelligence.
-
Proceedings of the 9Th International Joint Conference on Artificial Intelligence
, vol.1
, pp. 560-566
-
-
Valiant, L.G.1
|