-
1
-
-
43249133218
-
David Lewin and maximally even sets
-
Amiot, E.: David Lewin and maximally even sets. J. Math. Mus. 1, 157–172 (2007)
-
(2007)
J. Math. Mus
, vol.1
, pp. 157-172
-
-
Amiot, E.1
-
2
-
-
80053615922
-
Discrete Fourier transform and Bach’s good temperament
-
Amiot, E.: Discrete Fourier transform and Bach’s good temperament. Mus. Theor. Online 15 (2009)
-
(2009)
Mus. Theor. Online
, vol.15
-
-
Amiot, E.1
-
3
-
-
84884489558
-
The Torii of phases
-
In: Yust, J., Wild, J., Burgoyne, J.A. (eds.), Springer, Heidelberg
-
Amiot, E.: The Torii of phases. In: Yust, J., Wild, J., Burgoyne, J.A. (eds.) MCM 2013. LNCS, vol. 7937, pp. 1–18. Springer, Heidelberg (2013)
-
(2013)
MCM 2013. LNCS
, vol.7937
, pp. 1-18
-
-
Amiot, E.1
-
4
-
-
84949049574
-
Viewing diverse musical features in Fourier space: A survey. Paper presented to the International Congress on Music and Mathematics
-
28 November
-
Amiot, E.: Viewing diverse musical features in Fourier space: a survey. Paper presented to the International Congress on Music and Mathematics, Puerto Vallarta, 28 November 2014
-
(2014)
Puerto Vallarta
-
-
Amiot, E.1
-
5
-
-
84857538789
-
An algebra for periodic rhythms and scales
-
Amiot, E., Sethares, W.: An algebra for periodic rhythms and scales. J. Math. Mus. 5, 149–169 (2011)
-
(2011)
J. Math. Mus
, vol.5
, pp. 149-169
-
-
Amiot, E.1
Sethares, W.2
-
6
-
-
67049127910
-
Transformations of a special non-diatonic mode in twentiethcentury music: Bartók, Stravinsky, Scriabin and Albrecht
-
Antokoletz, E.: Transformations of a special non-diatonic mode in twentiethcentury music: Bartók, Stravinsky, Scriabin and Albrecht. Mus. Anal. 12, 25–45 (1993)
-
(1993)
Mus. Anal
, vol.12
, pp. 25-45
-
-
Antokoletz, E.1
-
7
-
-
33645028790
-
-
Translated by Bradshaw, S., Bennett, R.R., Harvard University Press, Cambridge
-
Boulez, P.: Boulez on Music Today. Translated by Bradshaw, S., Bennett, R.R., Harvard University Press, Cambridge (1971)
-
(1971)
Boulez on Music Today
-
-
Boulez, P.1
-
8
-
-
60949282187
-
The symmetrical source of Webern’s Opus 5, No. 4
-
Salzer, F. (ed.), Columbia University Press, New York
-
Burkhart, C.: The symmetrical source of Webern’s Opus 5, No. 4. In: Salzer, F. (ed.) Music Forum V, pp. 317–334. Columbia University Press, New York (1980)
-
(1980)
Music Forum V
, pp. 317-334
-
-
Burkhart, C.1
-
9
-
-
67649932747
-
Continuous harmonic spaces
-
Callender, C.: Continuous harmonic spaces. J. Mus. Theor. 51, 277–332 (2007)
-
(2007)
J. Mus. Theor
, vol.51
, pp. 277-332
-
-
Callender, C.1
-
10
-
-
70449745237
-
Transpositional combination and inversional symmetry in Bartók
-
Cohn, R.: Transpositional combination and inversional symmetry in Bartók. Mus. Theor. Spectr. 10, 19–42 (1988)
-
(1988)
Mus. Theor. Spectr
, vol.10
, pp. 19-42
-
-
Cohn, R.1
-
11
-
-
0040270716
-
A theory of set-complexes for music
-
Forte, A.: A theory of set-complexes for music. J. Mus. Theor. 8, 136–183 (1964)
-
(1964)
J. Mus. Theor
, vol.8
, pp. 136-183
-
-
Forte, A.1
-
14
-
-
65849284045
-
Re: Intervallic relations between two collections of notes
-
Lewin, D.: Re: intervallic relations between two collections of notes. J. Mus. Theor. 3, 298–301 (1959)
-
(1959)
J. Mus. Theor
, vol.3
, pp. 298-301
-
-
Lewin, D.1
-
15
-
-
66049156767
-
Special cases of the interval function between pitch-class sets X and Y
-
Lewin, D.: Special cases of the interval function between pitch-class sets X and Y. J. Mus. Theor. 45, 1–29 (2001)
-
(2001)
J. Mus. Theor
, vol.45
, pp. 1-29
-
-
Lewin, D.1
-
18
-
-
67649903227
-
General equal-tempered harmony (In two parts)
-
45, pp. 4–63
-
Quinn, I.: General equal-tempered harmony (in two parts). Perspectives of New Mus. 44, pp. 114–159 and 45, pp. 4–63 (2006)
-
(2006)
Perspectives of New Mus
, vol.44
, pp. 114-159
-
-
Quinn, I.1
-
19
-
-
84937402204
-
Schubert’s harmonic language and Fourier phase space
-
Yust, J.: Schubert’s harmonic language and Fourier phase space. J. Mus. Theor. 59, pp. 121–181 (2015)
-
(2015)
J. Mus. Theor
, vol.59
, pp. 121-181
-
-
Yust, J.1
|