-
1
-
-
33746785283
-
The reflection theorem
-
Grzegorz Bancerek. The reflection theorem. Journal of Formalized Mathematics, 2, 1990. http://megrez.mizar.org/mirror/JFM/Vol2/zfrefle.html.
-
(1990)
Journal of Formalized Mathematics
, pp. 2
-
-
Bancerek, G.1
-
2
-
-
0033086169
-
Computer proofs in Gödel’s class theory with equational definitions for composite and cross
-
March
-
Johan G. F. Belinfante. Computer proofs in Gödel’s class theory with equational definitions for composite and cross. Journal of Automated Reasoning, 22(3):311–339, March 1999.
-
(1999)
Journal of Automated Reasoning
, vol.22
, Issue.3
, pp. 311-339
-
-
Belinfante, J.G.F.1
-
3
-
-
84948973498
-
-
editors, LNCS 1690. Springer
-
Yves Bertot, Gilles Dowek, André Hirschowitz, Christine Paulin, and Laurent Théry, editors. Theorem Proving in Higher Order Logics: TPHOLs’99, LNCS 1690. Springer, 1999.
-
(1999)
Theorem Proving in Higher Order Logics: TPHOLs’99
-
-
Bertot, Y.1
Dowek, G.2
Hirschowitz, R.3
Paulin, C.4
Théry, L.5
-
5
-
-
0003356270
-
The consistency of the axiom of choice and of the generalized continuum hypothesis with the axioms of set theory
-
In S. Feferman et al., editors, Oxford University Press, First published in
-
Kurt Gödel. The consistency of the axiom of choice and of the generalized continuum hypothesis with the axioms of set theory. In S. Feferman et al., editors, Kurt Gödel: Collected Works, volume 2. Oxford University Press, 1990. First published in 1940.
-
(1990)
Kurt Gödel: Collected Works
, vol.2
-
-
Gödel, K.1
-
6
-
-
49549145605
-
A unification algorithm for typed λ-calculus
-
G. P. Huet. A unification algorithm for typed λ-calculus. Theoretical Computer Science, 1:27–57, 1975.
-
(1975)
Theoretical Computer Science
, vol.1
, pp. 27-57
-
-
Huet, G.P.1
-
10
-
-
0006798044
-
Set theory for verification: I. From foundations to functions
-
Lawrence C. Paulson. Set theory for verification: I. From foundations to functions. Journal of Automated Reasoning, 11(3):353–389, 1993.
-
(1993)
Journal of Automated Reasoning
, vol.11
, Issue.3
, pp. 353-389
-
-
Paulson, L.C.1
-
11
-
-
0029387254
-
Set theory for verification: II. Induction and recursion
-
Lawrence C. Paulson. Set theory for verification: II. Induction and recursion. Journal of Automated Reasoning, 15(2):167–215, 1995.
-
(1995)
Journal of Automated Reasoning
, vol.15
, Issue.2
, pp. 167-215
-
-
Paulson, L.C.1
-
12
-
-
0030388689
-
Mechanizing set theory: Cardinal arithmetic and the axiom of choice
-
December
-
Lawrence C. Paulson and Krzysztof Grąbczewski. Mechanizing set theory: Cardinal arithmetic and the axiom of choice. Journal of Automated Reasoning, 17(3):291–323, December 1996.
-
(1996)
Journal of Automated Reasoning
, vol.17
, Issue.3
, pp. 291-323
-
-
Paulson, L.C.1
Grąbczewski, K.2
-
13
-
-
84949021713
-
-
The QED manifesto. http://www-unix.mcs.anl.gov/qed/, 1995.
-
(1995)
-
-
-
14
-
-
0006763226
-
Automated deduction in von Neumann-Bernays-Gödel set theory
-
Art Quaife. Automated deduction in von Neumann-Bernays-Gödel set theory. Journal of Automated Reasoning, 8(1):91–147, 1992.
-
(1992)
Journal of Automated Reasoning
, vol.8
, Issue.1
, pp. 91-147
-
-
Quaife, A.1
-
15
-
-
84949648890
-
Type classes and overloading in higher-order logic
-
Elsa L. Gunter and Amy Felty, editors, LNCS 1275, Springer
-
Markus Wenzel. Type classes and overloading in higher-order logic. In Elsa L. Gunter and Amy Felty, editors, Theorem Proving in Higher Order Logics: TPHOLs’97, LNCS 1275, pages 307–322. Springer, 1997.
-
(1997)
Theorem Proving in Higher Order Logics: TPHOLs’97
, pp. 307-322
-
-
Wenzel, M.1
-
17
-
-
0000603921
-
Modular elliptic curves and Fermat’s Last Theorem
-
Andrew J. Wiles. Modular elliptic curves and Fermat’s Last Theorem. Annals of Mathematics, 141(3):443–551, 1995.
-
(1995)
Annals of Mathematics
, vol.141
, Issue.3
, pp. 443-551
-
-
Wiles, A.J.1
|