메뉴 건너뛰기




Volumn 2392, Issue , 2002, Pages 377-391

The reflection theorem: A study in meta-theoretic reasoning

Author keywords

[No Author keywords available]

Indexed keywords

AUTOMATION;

EID: 84948969695     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-45620-1_31     Document Type: Conference Paper
Times cited : (10)

References (17)
  • 1
    • 33746785283 scopus 로고
    • The reflection theorem
    • Grzegorz Bancerek. The reflection theorem. Journal of Formalized Mathematics, 2, 1990. http://megrez.mizar.org/mirror/JFM/Vol2/zfrefle.html.
    • (1990) Journal of Formalized Mathematics , pp. 2
    • Bancerek, G.1
  • 2
    • 0033086169 scopus 로고    scopus 로고
    • Computer proofs in Gödel’s class theory with equational definitions for composite and cross
    • March
    • Johan G. F. Belinfante. Computer proofs in Gödel’s class theory with equational definitions for composite and cross. Journal of Automated Reasoning, 22(3):311–339, March 1999.
    • (1999) Journal of Automated Reasoning , vol.22 , Issue.3 , pp. 311-339
    • Belinfante, J.G.F.1
  • 5
    • 0003356270 scopus 로고
    • The consistency of the axiom of choice and of the generalized continuum hypothesis with the axioms of set theory
    • In S. Feferman et al., editors, Oxford University Press, First published in
    • Kurt Gödel. The consistency of the axiom of choice and of the generalized continuum hypothesis with the axioms of set theory. In S. Feferman et al., editors, Kurt Gödel: Collected Works, volume 2. Oxford University Press, 1990. First published in 1940.
    • (1990) Kurt Gödel: Collected Works , vol.2
    • Gödel, K.1
  • 6
    • 49549145605 scopus 로고
    • A unification algorithm for typed λ-calculus
    • G. P. Huet. A unification algorithm for typed λ-calculus. Theoretical Computer Science, 1:27–57, 1975.
    • (1975) Theoretical Computer Science , vol.1 , pp. 27-57
    • Huet, G.P.1
  • 10
    • 0006798044 scopus 로고
    • Set theory for verification: I. From foundations to functions
    • Lawrence C. Paulson. Set theory for verification: I. From foundations to functions. Journal of Automated Reasoning, 11(3):353–389, 1993.
    • (1993) Journal of Automated Reasoning , vol.11 , Issue.3 , pp. 353-389
    • Paulson, L.C.1
  • 11
    • 0029387254 scopus 로고
    • Set theory for verification: II. Induction and recursion
    • Lawrence C. Paulson. Set theory for verification: II. Induction and recursion. Journal of Automated Reasoning, 15(2):167–215, 1995.
    • (1995) Journal of Automated Reasoning , vol.15 , Issue.2 , pp. 167-215
    • Paulson, L.C.1
  • 12
    • 0030388689 scopus 로고    scopus 로고
    • Mechanizing set theory: Cardinal arithmetic and the axiom of choice
    • December
    • Lawrence C. Paulson and Krzysztof Grąbczewski. Mechanizing set theory: Cardinal arithmetic and the axiom of choice. Journal of Automated Reasoning, 17(3):291–323, December 1996.
    • (1996) Journal of Automated Reasoning , vol.17 , Issue.3 , pp. 291-323
    • Paulson, L.C.1    Grąbczewski, K.2
  • 13
    • 84949021713 scopus 로고
    • The QED manifesto. http://www-unix.mcs.anl.gov/qed/, 1995.
    • (1995)
  • 14
    • 0006763226 scopus 로고
    • Automated deduction in von Neumann-Bernays-Gödel set theory
    • Art Quaife. Automated deduction in von Neumann-Bernays-Gödel set theory. Journal of Automated Reasoning, 8(1):91–147, 1992.
    • (1992) Journal of Automated Reasoning , vol.8 , Issue.1 , pp. 91-147
    • Quaife, A.1
  • 15
    • 84949648890 scopus 로고    scopus 로고
    • Type classes and overloading in higher-order logic
    • Elsa L. Gunter and Amy Felty, editors, LNCS 1275, Springer
    • Markus Wenzel. Type classes and overloading in higher-order logic. In Elsa L. Gunter and Amy Felty, editors, Theorem Proving in Higher Order Logics: TPHOLs’97, LNCS 1275, pages 307–322. Springer, 1997.
    • (1997) Theorem Proving in Higher Order Logics: TPHOLs’97 , pp. 307-322
    • Wenzel, M.1
  • 17
    • 0000603921 scopus 로고
    • Modular elliptic curves and Fermat’s Last Theorem
    • Andrew J. Wiles. Modular elliptic curves and Fermat’s Last Theorem. Annals of Mathematics, 141(3):443–551, 1995.
    • (1995) Annals of Mathematics , vol.141 , Issue.3 , pp. 443-551
    • Wiles, A.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.