메뉴 건너뛰기




Volumn 2002-January, Issue , 2002, Pages 2-6

Application of feedforward neural networks for soft sensors in the sugar industry

Author keywords

Chemical engineering; Chemical sensors; Distributed control; Feedforward neural networks; Intelligent networks; Intelligent sensors; Investments; Neural networks; Process control; Sugar industry

Indexed keywords

CHEMICAL ENGINEERING; CHEMICAL SENSORS; FEEDFORWARD NEURAL NETWORKS; INTELLIGENT BUILDINGS; INTELLIGENT CONTROL; INTELLIGENT NETWORKS; INVESTMENTS; NEURAL NETWORKS; PROCESS CONTROL; SMART SENSORS; SUGAR CANE; TESTING;

EID: 84948962345     PISSN: 15224899     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/SBRN.2002.1181426     Document Type: Conference Paper
Times cited : (15)

References (14)
  • 1
    • 0034509548 scopus 로고    scopus 로고
    • A methodology for building neural networks models from empirical engineering data
    • Yoram Reich, and S.V. Barai, "A methodology for building neural networks models from empirical engineering data", Engineering Applications of AI, vol.13, no. 5, pp. 377-386, 2000
    • (2000) Engineering Applications of AI , vol.13 , Issue.5 , pp. 377-386
    • Reich, Y.1    Barai, S.V.2
  • 3
    • 79951784194 scopus 로고    scopus 로고
    • An introduction to neural networks and their application in the sugar industry
    • SD. Peacock, "An introduction to neural networks and their application in the sugar industry", Proc S Afr Sugar Technol Ass., 1998
    • (1998) Proc S Afr Sugar Technol Ass.
    • Peacock, S.D.1
  • 4
    • 84949055618 scopus 로고    scopus 로고
    • Neural Networks models of evaporation and crystallization processes in sugar can industry
    • India
    • M. Benne, et al., "Neural Networks models of evaporation and crystallization processes in sugar can industry", XXIII Congress ISSCT, India, 1999
    • (1999) XXIII Congress ISSCT
    • Benne, M.1
  • 10
    • 0024880831 scopus 로고
    • Multi-layer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White, "Multi-layer feedforward networks are universal approximators", Neural Networks, vol. 2, pp. 359-366, 1989
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 11
    • 0024861871 scopus 로고
    • Approximation by Superpositions of a Sigmoidal function
    • G. Cybenko, "Approximation by Superpositions of a Sigmoidal function", Mathematics of Control, Signals, and Systems, vol. 2, pp. 303-314, 1989
    • (1989) Mathematics of Control, Signals, and Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 12
    • 0034372481 scopus 로고    scopus 로고
    • Applications of Artificial Neural Networks in Chemical Engineering
    • D. Himmelblau, "Applications of Artificial Neural Networks in Chemical Engineering", Journal of Chemical Engineering, vol. 17, pp. 373-392, 2000
    • (2000) Journal of Chemical Engineering , vol.17 , pp. 373-392
    • Himmelblau, D.1
  • 13
    • 0003066062 scopus 로고
    • Experimental analysis of the real-time recurrent learning algorithm
    • R.J. Williams, and D. Zipser, "Experimental analysis of the real-time recurrent learning algorithm.", Connection Sci., vol. 1, pp. 87-111, 1989
    • (1989) Connection Sci. , vol.1 , pp. 87-111
    • Williams, R.J.1    Zipser, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.