메뉴 건너뛰기




Volumn 2002-January, Issue , 2002, Pages 214-223

Clustering spatial data in the presence of obstacles: A density-based approach

Author keywords

Application software; Biomedical imaging; Clustering algorithms; Computer vision; Geographic Information Systems; Image analysis; Noise shaping; Satellites; Shape; Testing

Indexed keywords

ALGORITHMS; APPLICATION PROGRAMS; BIOINFORMATICS; COMPUTER VISION; DATABASE SYSTEMS; GEOGRAPHIC INFORMATION SYSTEMS; IMAGE ANALYSIS; INFORMATION SYSTEMS; MEDICAL IMAGING; MEDICAL INFORMATION SYSTEMS; SATELLITE IMAGERY; SATELLITES; SOFTWARE TESTING; TESTING;

EID: 84948737005     PISSN: 10988068     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IDEAS.2002.1029674     Document Type: Conference Paper
Times cited : (35)

References (32)
  • 4
    • 0026927872 scopus 로고
    • Numerical convergence and interpretation of the fuzzy c-shells clustering algorithm
    • J. Bezdek and R. Hathaway. Numerical convergence and interpretation of the fuzzy c-shells clustering algorithm. IEEE Transactions on Neural Networks, 3(5):787-793, 1992.
    • (1992) IEEE Transactions on Neural Networks , vol.3 , Issue.5 , pp. 787-793
    • Bezdek, J.1    Hathaway, R.2
  • 6
    • 0026044210 scopus 로고
    • A probabilistic approach to clustering
    • V. Brailovsky. A probabilistic approach to clustering. Pattern Recognition Letters, 12(4):193-198, 1991.
    • (1991) Pattern Recognition Letters , vol.12 , Issue.4 , pp. 193-198
    • Brailovsky, V.1
  • 8
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In Knowledge Discovery and Data Mining, pages 226-231, 1996.
    • (1996) Knowledge Discovery and Data Mining , pp. 226-231
    • Ester, M.1    Kriegel, H.-P.2    Sander, J.3    Xu, X.4
  • 13
    • 85140527321 scopus 로고    scopus 로고
    • An efficient approach to clustering in large multimedia databases with noise
    • A. Hinneburg and D. A. Keim. An efficient approach to clustering in large multimedia databases with noise. In Knowledge Discovery and Data Mining, pages 58-65, 1998.
    • (1998) Knowledge Discovery and Data Mining , pp. 58-65
    • Hinneburg, A.1    Keim, D.A.2
  • 15
    • 0032686723 scopus 로고    scopus 로고
    • Chameleon: A hierarchical clustering algorithm using dynamic modeling
    • G. Karypis, E. Han, and V. Kumar. Chameleon: A hierarchical clustering algorithm using dynamic modeling. In IEEE Computer, pages 68-75, 1999.
    • (1999) IEEE Computer , pp. 68-75
    • Karypis, G.1    Han, E.2    Kumar, V.3
  • 16
    • 0031162081 scopus 로고    scopus 로고
    • The SR-tree: An index structure for high-dimensional nearest neighbor queries
    • N. Katayama and S. Satoh. The SR-tree: an index structure for high-dimensional nearest neighbor queries. In Proc. of the 1997 ACM SIGMOD Intl. Conf., pages 369-380, 1997.
    • (1997) Proc. of the 1997 ACM SIGMOD Intl. Conf. , pp. 369-380
    • Katayama, N.1    Satoh, S.2
  • 18
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • T. Kohonen. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43:59-69, 1982.
    • (1982) Biological Cybernetics , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 20
    • 80051983183 scopus 로고    scopus 로고
    • Polygon reduction: An algorithm for minimum line representation for polygons
    • Submitted
    • C.-H. Lee and O. R. Zaïane. Polygon reduction: An algorithm for minimum line representation for polygons. In Submitted to 14th Canadian Conf. on Computational Geometry, 2002.
    • (2002) 14th Canadian Conf. on Computational Geometry
    • Lee, C.-H.1    Zaïane, O.R.2
  • 21
    • 0003136237 scopus 로고
    • Efficient and effective clustering methods for spatial data mining
    • R. Ng and J. Han. Efficient and effective clustering methods for spatial data mining. In Proc. of VLDB Conf., pages 144-155, 1994.
    • (1994) Proc. of VLDB Conf. , pp. 144-155
    • Ng, R.1    Han, J.2
  • 22
    • 0029415780 scopus 로고
    • A conceptual version of the k-means algorithm
    • H. Ralambondrainy. A conceptual version of the k-means algorithm. Pattern Recognition Letters, 16(11):1147-1157, 1995.
    • (1995) Pattern Recognition Letters , vol.16 , Issue.11 , pp. 1147-1157
    • Ralambondrainy, H.1
  • 23
    • 0014534297 scopus 로고
    • A new approach to clustering
    • E. H. Ruspini. A new approach to clustering. Information and Control, 15(1):22-32, 1969.
    • (1969) Information and Control , vol.15 , Issue.1 , pp. 22-32
    • Ruspini, E.H.1
  • 27
    • 0001609217 scopus 로고
    • A mnemonic for areas of polygons
    • M. Stone. A mnemonic for areas of polygons. AMER. MATH. MONTHLY, 93:479-480, 1986.
    • (1986) Amer. Math. Monthly , vol.93 , pp. 479-480
    • Stone, M.1
  • 29
    • 84949423737 scopus 로고    scopus 로고
    • Constraint-based clustering in large databases
    • A. K. H. Tung, R. T. Ng, L. V. S. Lakshmanan, and J. Han. Constraint-based clustering in large databases. In ICDT, pages 405-419, 2001.
    • (2001) ICDT , pp. 405-419
    • Tung, A.K.H.1    Ng, R.T.2    Lakshmanan, L.V.S.3    Han, J.4
  • 30
    • 84994158589 scopus 로고    scopus 로고
    • STING: A statistical information grid approach to spatial data mining
    • W. Wang, J. Yang, and R. R. Muntz. STING: A statistical information grid approach to spatial data mining. In The VLDB Journal, pages 186-195, 1997.
    • (1997) The VLDB Journal , pp. 186-195
    • Wang, W.1    Yang, J.2    Muntz, R.R.3
  • 31
    • 0014976008 scopus 로고
    • Graph-theoretical methods for detecting and describing gestalt clusters
    • C. Zahn. Graph-theoretical methods for detecting and describing gestalt clusters. In IEEE Transactions on Computers, pages 20:68-86, 1971.
    • (1971) IEEE Transactions on Computers , vol.20 , pp. 68-86
    • Zahn, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.