-
1
-
-
33747117373
-
The Origins and the Future of Microfluidics
-
Whitesides, G. M. The Origins and the Future of Microfluidics Nature 2006, 442, 368-73 10.1038/nature05058
-
(2006)
Nature
, vol.442
, pp. 368-373
-
-
Whitesides, G.M.1
-
2
-
-
0025207507
-
Miniaturized Total Chemical Analysis Systems: A Novel Concept for Chemical Sensing
-
Manz, A.; Graber, N.; Widmer, H. M. Miniaturized Total Chemical Analysis Systems: A Novel Concept for Chemical Sensing Sens. Actuators, B 1990, 1, 244-248 10.1016/0925-4005(90)80209-I
-
(1990)
Sens. Actuators, B
, vol.1
, pp. 244-248
-
-
Manz, A.1
Graber, N.2
Widmer, H.M.3
-
3
-
-
33747135953
-
Future Lab-on-a-Chip Technologies for Interrogating Individual Molecules
-
Craighead, H. Future Lab-on-a-Chip Technologies for Interrogating Individual Molecules Nature 2006, 442, 387-93 10.1038/nature05061
-
(2006)
Nature
, vol.442
, pp. 387-393
-
-
Craighead, H.1
-
4
-
-
26444587118
-
Microfluidic Devices for Environmental Monitoring
-
Marle, L.; Greenway, G. M. Microfluidic Devices for Environmental Monitoring TrAC, Trends Anal. Chem. 2005, 24, 795-802 10.1016/j.trac.2005.08.003
-
(2005)
TrAC, Trends Anal. Chem.
, vol.24
, pp. 795-802
-
-
Marle, L.1
Greenway, G.M.2
-
5
-
-
57849109807
-
Applications of Microfluidic Systems in Environmental Analysis
-
Li, H. F.; Lin, J. M. Applications of Microfluidic Systems in Environmental Analysis Anal. Bioanal. Chem. 2009, 393, 555-567 10.1007/s00216-008-2439-4
-
(2009)
Anal. Bioanal. Chem.
, vol.393
, pp. 555-567
-
-
Li, H.F.1
Lin, J.M.2
-
6
-
-
37649010665
-
Microfluidics for Drug Discovery and Development: From Target Selection to Product Lifecycle Management
-
Kang, L.; Chung, B. G.; Langer, R.; Khademhosseini, A. Microfluidics for Drug Discovery and Development: From Target Selection to Product Lifecycle Management Drug Discovery Today 2008, 13, 1-13 10.1016/j.drudis.2007.10.003
-
(2008)
Drug Discovery Today
, vol.13
, pp. 1-13
-
-
Kang, L.1
Chung, B.G.2
Langer, R.3
Khademhosseini, A.4
-
7
-
-
84861387367
-
A Multilayer Microdevice for Cell-Based High-Throughput Drug Screening
-
Liu, C.; Wang, L.; Xu, Z.; Li, J.; Ding, X.; Wang, Q.; Chunyu, L. A Multilayer Microdevice for Cell-Based High-Throughput Drug Screening J. Micromech. Microeng. 2012, 22, 065008 10.1088/0960-1317/22/6/065008
-
(2012)
J. Micromech. Microeng.
, vol.22
, pp. 065008
-
-
Liu, C.1
Wang, L.2
Xu, Z.3
Li, J.4
Ding, X.5
Wang, Q.6
Chunyu, L.7
-
8
-
-
84922591662
-
Lab-on-a-Chip Devices for Gold Nanoparticle Synthesis and Their Role as a Catalyst Support for Continuous Flow Catalysis
-
Navin, C. V.; Krishna, K. S.; Theegala, C. S.; Kumar, C. S. S. R. Lab-on-a-Chip Devices for Gold Nanoparticle Synthesis and Their Role as a Catalyst Support for Continuous Flow Catalysis Nanotechnol. Rev. 2014, 3, 39-63 10.1515/ntrev-2013-0028
-
(2014)
Nanotechnol. Rev.
, vol.3
, pp. 39-63
-
-
Navin, C.V.1
Krishna, K.S.2
Theegala, C.S.3
Kumar, C.S.S.R.4
-
9
-
-
84862939213
-
Size Evolution of Gold Nanoparticles in a Millifluidic Reactor
-
Li, Y.; Sanampudi, A.; Raji Reddy, V.; Biswas, S.; Nandakumar, K.; Yemane, D.; Goettert, J.; Kumar, C. S. Size Evolution of Gold Nanoparticles in a Millifluidic Reactor ChemPhysChem 2012, 13, 177-82 10.1002/cphc.201100726
-
(2012)
ChemPhysChem
, vol.13
, pp. 177-182
-
-
Li, Y.1
Sanampudi, A.2
Raji Reddy, V.3
Biswas, S.4
Nandakumar, K.5
Yemane, D.6
Goettert, J.7
Kumar, C.S.8
-
10
-
-
84887606413
-
Lab-on-a-Chip Synthesis of Inorganic Nanomaterials and Quantum Dots for Biomedical Applications
-
Krishna, K. S.; Li, Y.; Li, S.; Kumar, C. S. Lab-on-a-Chip Synthesis of Inorganic Nanomaterials and Quantum Dots for Biomedical Applications Adv. Drug Delivery Rev. 2013, 65, 1470-95 10.1016/j.addr.2013.05.006
-
(2013)
Adv. Drug Delivery Rev.
, vol.65
, pp. 1470-1495
-
-
Krishna, K.S.1
Li, Y.2
Li, S.3
Kumar, C.S.4
-
11
-
-
15244347610
-
Disposable Microfluidic Devices: Fabrication, Function, and Application
-
Fiorini, G. S.; Chiu, D. T. Disposable Microfluidic Devices: Fabrication, Function, and Application BioTechniques 2005, 38, 429-446 10.2144/05383RV02
-
(2005)
BioTechniques
, vol.38
, pp. 429-446
-
-
Fiorini, G.S.1
Chiu, D.T.2
-
12
-
-
34548077793
-
Microfluidic Platforms for Lab-on-a-Chip Applications
-
Haeberle, S.; Zengerle, R. Microfluidic Platforms for Lab-on-a-Chip Applications Lab Chip 2007, 7, 1094-110 10.1039/b706364b
-
(2007)
Lab Chip
, vol.7
, pp. 1094-1110
-
-
Haeberle, S.1
Zengerle, R.2
-
13
-
-
33847342176
-
Three-Dimensional Measurement and Visualization of Internal Flow of a Moving Droplet Using Confocal Micro-PIV
-
Kinoshita, H.; Kaneda, S.; Fujii, T.; Oshima, M. Three-Dimensional Measurement and Visualization of Internal Flow of a Moving Droplet Using Confocal Micro-Piv Lab Chip 2007, 7, 338-46 10.1039/B617391H
-
(2007)
Lab Chip
, vol.7
, pp. 338-346
-
-
Kinoshita, H.1
Kaneda, S.2
Fujii, T.3
Oshima, M.4
-
14
-
-
70349307316
-
Micro-Particle Image Velocimetry (Micropiv): Recent Developments, Applications, and Guidelines
-
Lindken, R.; Rossi, M.; Grosse, S.; Westerweel, J. Micro-Particle Image Velocimetry (Micropiv): Recent Developments, Applications, and Guidelines Lab Chip 2009, 9, 2551-67 10.1039/b906558j
-
(2009)
Lab Chip
, vol.9
, pp. 2551-2567
-
-
Lindken, R.1
Rossi, M.2
Grosse, S.3
Westerweel, J.4
-
15
-
-
84919820118
-
Characterization of Microfluidic-Based Acoustic Sensor for Immersion Application
-
Abd Rahman, M. F.; Nawi, M. N. M.; Abd Manaf, A.; Arshad, M. R. Characterization of Microfluidic-Based Acoustic Sensor for Immersion Application IEEE Sens. J. 2015, 15, 1559-1566 10.1109/JSEN.2014.2363680
-
(2015)
IEEE Sens. J.
, vol.15
, pp. 1559-1566
-
-
Abd Rahman, M.F.1
Nawi, M.N.M.2
Abd Manaf, A.3
Arshad, M.R.4
-
16
-
-
84861190839
-
Thermoelectric Microfluidic Sensor for Bio-Chemical Applications
-
Kopparthy, V. L.; Tangutooru, S. M.; Nestorova, G. G.; Guilbeau, E. J. Thermoelectric Microfluidic Sensor for Bio-Chemical Applications Sens. Actuators, B 2012, 166-167, 608-615 10.1016/j.snb.2012.03.021
-
(2012)
Sens. Actuators, B
, vol.166-167
, pp. 608-615
-
-
Kopparthy, V.L.1
Tangutooru, S.M.2
Nestorova, G.G.3
Guilbeau, E.J.4
-
17
-
-
67649841043
-
Micro-Electromechanical Sensors in the Analytical Field
-
Zougagh, M.; Rios, A. Micro-Electromechanical Sensors in the Analytical Field Analyst 2009, 134, 1274-1290 10.1039/b901498p
-
(2009)
Analyst
, vol.134
, pp. 1274-1290
-
-
Zougagh, M.1
Rios, A.2
-
18
-
-
34748835764
-
Micro- and Nanomechanical Sensors for Environmental, Chemical, and Biological Detection
-
Waggoner, P. S.; Craighead, H. G. Micro- and Nanomechanical Sensors for Environmental, Chemical, and Biological Detection Lab Chip 2007, 7, 1238-55 10.1039/b707401h
-
(2007)
Lab Chip
, vol.7
, pp. 1238-1255
-
-
Waggoner, P.S.1
Craighead, H.G.2
-
19
-
-
84888868810
-
Triboelectric Nanogenerators as New Energy Technology for Self-Powered Systems and as Active Mechanical and Chemical Sensors
-
Wang, Z. L. Triboelectric Nanogenerators as New Energy Technology for Self-Powered Systems and as Active Mechanical and Chemical Sensors ACS Nano 2013, 7, 9533-9557 10.1021/nn404614z
-
(2013)
ACS Nano
, vol.7
, pp. 9533-9557
-
-
Wang, Z.L.1
-
20
-
-
84903488394
-
Harvesting Water Wave Energy by Asymmetric Screening of Electrostatic Charges on a Nanostructured Hydrophobic Thin-Film Surface
-
Zhu, G.; Su, Y.; Bai, P.; Chen, J.; Jing, Q.; Yang, W.; Wang, Z. L. Harvesting Water Wave Energy by Asymmetric Screening of Electrostatic Charges on a Nanostructured Hydrophobic Thin-Film Surface ACS Nano 2014, 8, 6031-6037 10.1021/nn5012732
-
(2014)
ACS Nano
, vol.8
, pp. 6031-6037
-
-
Zhu, G.1
Su, Y.2
Bai, P.3
Chen, J.4
Jing, Q.5
Yang, W.6
Wang, Z.L.7
-
21
-
-
84946491060
-
Triboelectric Nanogenerators as a New Energy Technology: From Fundamentals, Devices, to Applications
-
Zhu, G.; Peng, B.; Chen, J.; Jing, Q.; Lin Wang, Z. Triboelectric Nanogenerators as a New Energy Technology: From Fundamentals, Devices, to Applications Nano Energy 2015, 14, 126-138 10.1016/j.nanoen.2014.11.050
-
(2015)
Nano Energy
, vol.14
, pp. 126-138
-
-
Zhu, G.1
Peng, B.2
Chen, J.3
Jing, Q.4
Lin Wang, Z.5
-
22
-
-
84855453464
-
Self-Powered Nanosensors and Nanosystems
-
Wang, Z. L. Self-Powered Nanosensors and Nanosystems Adv. Mater. 2012, 24, 280-285 10.1002/adma.201102958
-
(2012)
Adv. Mater.
, vol.24
, pp. 280-285
-
-
Wang, Z.L.1
-
23
-
-
84924743446
-
Triboelectric Nanogenerators as New Energy Technology and Self-Powered Sensors - Principles, Problems and Perspectives
-
Wang, Z. L. Triboelectric Nanogenerators as New Energy Technology and Self-Powered Sensors-Principles, Problems and Perspectives Faraday Discuss. 2014, 176, 447-458 10.1039/C4FD00159A
-
(2014)
Faraday Discuss.
, vol.176
, pp. 447-458
-
-
Wang, Z.L.1
-
24
-
-
84913554665
-
Triboelectric Nanogenerators as Self-Powered Active Sensors
-
Wang, S.; Lin, L.; Wang, Z. L. Triboelectric Nanogenerators as Self-Powered Active Sensors Nano Energy 2015, 11, 436-462 10.1016/j.nanoen.2014.10.034
-
(2015)
Nano Energy
, vol.11
, pp. 436-462
-
-
Wang, S.1
Lin, L.2
Wang, Z.L.3
-
25
-
-
84908406313
-
3d Fiber-Based Hybrid Nanogenerator for Energy Harvesting and as a Self-Powered Pressure Sensor
-
Li, X.; Lin, Z.-H.; Cheng, G.; Wen, X.; Liu, Y.; Niu, S.; Wang, Z. L. 3d Fiber-Based Hybrid Nanogenerator for Energy Harvesting and as a Self-Powered Pressure Sensor ACS Nano 2014, 8, 10674-10681 10.1021/nn504243j
-
(2014)
ACS Nano
, vol.8
, pp. 10674-10681
-
-
Li, X.1
Lin, Z.-H.2
Cheng, G.3
Wen, X.4
Liu, Y.5
Niu, S.6
Wang, Z.L.7
-
26
-
-
84934282756
-
A Flexible, Stretchable and Shape-Adaptive Approach for Versatile Energy Conversion and Self-Powered Biomedical Monitoring
-
Yang, P. K.; Lin, L.; Yi, F.; Li, X.; Pradel, K. C.; Zi, Y.; Wu, C. I.; He, J. H.; Zhang, Y.; Wang, Z. L. A Flexible, Stretchable and Shape-Adaptive Approach for Versatile Energy Conversion and Self-Powered Biomedical Monitoring Adv. Mater. 2015, 27, 3817 10.1002/adma.201500652
-
(2015)
Adv. Mater.
, vol.27
, pp. 3817
-
-
Yang, P.K.1
Lin, L.2
Yi, F.3
Li, X.4
Pradel, K.C.5
Zi, Y.6
Wu, C.I.7
He, J.H.8
Zhang, Y.9
Wang, Z.L.10
-
27
-
-
84877711037
-
A Self-Powered Triboelectric Nanosensor for Mercury Ion Detection
-
Lin, Z. H.; Zhu, G.; Zhou, Y. S.; Yang, Y.; Bai, P.; Chen, J.; Wang, Z. L. A Self-Powered Triboelectric Nanosensor for Mercury Ion Detection Angew. Chem., Int. Ed. 2013, 52, 5065-5069 10.1002/anie.201300437
-
(2013)
Angew. Chem., Int. Ed.
, vol.52
, pp. 5065-5069
-
-
Lin, Z.H.1
Zhu, G.2
Zhou, Y.S.3
Yang, Y.4
Bai, P.5
Chen, J.6
Wang, Z.L.7
-
28
-
-
84887905526
-
Water-Solid Surface Contact Electrification and Its Use for Harvesting Liquid-Wave Energy
-
Lin, Z. H.; Cheng, G.; Lin, L.; Lee, S.; Wang, Z. L. Water-Solid Surface Contact Electrification and Its Use for Harvesting Liquid-Wave Energy Angew. Chem., Int. Ed. 2013, 52, 12545-12549 10.1002/anie.201307249
-
(2013)
Angew. Chem., Int. Ed.
, vol.52
, pp. 12545-12549
-
-
Lin, Z.H.1
Cheng, G.2
Lin, L.3
Lee, S.4
Wang, Z.L.5
-
29
-
-
84904461614
-
Harvesting Water Drop Energy by a Sequential Contact-Electrification and Electrostatic-Induction Process
-
Lin, Z. H.; Cheng, G.; Lee, S.; Pradel, K. C.; Wang, Z. L. Harvesting Water Drop Energy by a Sequential Contact-Electrification and Electrostatic-Induction Process Adv. Mater. 2014, 26, 4690-4696 10.1002/adma.201400373
-
(2014)
Adv. Mater.
, vol.26
, pp. 4690-4696
-
-
Lin, Z.H.1
Cheng, G.2
Lee, S.3
Pradel, K.C.4
Wang, Z.L.5
-
30
-
-
84903477526
-
Dual-Mode Triboelectric Nanogenerator for Harvesting Water Energy and as a Self-Powered Ethanol Nanosensor
-
Lin, Z. H.; Cheng, G.; Wu, W.; Pradel, K. C.; Wang, Z. L. Dual-Mode Triboelectric Nanogenerator for Harvesting Water Energy and as a Self-Powered Ethanol Nanosensor ACS Nano 2014, 8, 6440-6448 10.1021/nn501983s
-
(2014)
ACS Nano
, vol.8
, pp. 6440-6448
-
-
Lin, Z.H.1
Cheng, G.2
Wu, W.3
Pradel, K.C.4
Wang, Z.L.5
-
31
-
-
77951626691
-
Preparation of Superhydrophobic Coatings on Zinc, Silicon, and Steel by a Solution-Immersion Technique
-
Liu, H.; Szunerits, S.; Pisarek, M.; Xu, W.; Boukherroub, R. Preparation of Superhydrophobic Coatings on Zinc, Silicon, and Steel by a Solution-Immersion Technique ACS Appl. Mater. Interfaces 2009, 1, 2086-2091 10.1021/am900488w
-
(2009)
ACS Appl. Mater. Interfaces
, vol.1
, pp. 2086-2091
-
-
Liu, H.1
Szunerits, S.2
Pisarek, M.3
Xu, W.4
Boukherroub, R.5
-
32
-
-
0030129191
-
Flow Electrification Measurements of Transformer Insulation Using a Couette Flow Facility
-
Washabaugh, A. P.; Zahn, M. Flow Electrification Measurements of Transformer Insulation Using a Couette Flow Facility IEEE Trans. Dielectr. Electr. Insul. 1996, 3, 161-181 10.1109/94.486767
-
(1996)
IEEE Trans. Dielectr. Electr. Insul.
, vol.3
, pp. 161-181
-
-
Washabaugh, A.P.1
Zahn, M.2
-
33
-
-
17144473550
-
Space Charge Density in Dielectric and Conductive Liquids Flowing Through a Glass Pipe
-
Eric, M.; Thierry, P.; Gerard, T. Space Charge Density in Dielectric and Conductive Liquids Flowing Through a Glass Pipe J. Electrost. 2001, 51-52, 448-454 10.1016/S0304-3886(01)00082-1
-
(2001)
J. Electrost.
, vol.5152
, pp. 448-454
-
-
Eric, M.1
Thierry, P.2
Gerard, T.3
-
34
-
-
50049105274
-
A Micro Diffuser/Nozzle Pump with Fins on the Sidewall
-
Li, X. H.; Yu, X. M.; Zhang, D. C.; Li, Z. H.; Xu, W. H. A Micro Diffuser/Nozzle Pump with Fins on the Sidewall Transducers 07, Int. Conf. Solid-State Sens. Actuators 2007, 2207-2210 10.1109/SENSOR.2007.4300606
-
(2007)
Transducers 07, Int. Conf. Solid-State Sens. Actuators
, pp. 2207-2210
-
-
Li, X.H.1
Yu, X.M.2
Zhang, D.C.3
Li, Z.H.4
Xu, W.H.5
-
35
-
-
34548383109
-
In situ Microfluidic Flow Rate Measurement Based on Near-field Heterodyne Grating Method
-
Katayama, K.; Uchimura, H.; Sakakibara, H.; Kikutani, Y.; Kitamori, T. In situ Microfluidic Flow Rate Measurement Based on Near-field Heterodyne Grating Method Rev. Sci. Instrum. 2007, 78, 083101 10.1063/1.2766826
-
(2007)
Rev. Sci. Instrum.
, vol.78
, pp. 083101
-
-
Katayama, K.1
Uchimura, H.2
Sakakibara, H.3
Kikutani, Y.4
Kitamori, T.5
-
36
-
-
33750149392
-
Microfluidic Circuits with Tunable Flow Resistances
-
Lam, E. W.; Cooksey, G. A.; Finlayson, B. A.; Folch, A. Microfluidic Circuits with Tunable Flow Resistances Appl. Phys. Lett. 2006, 89, 164105 10.1063/1.2363931
-
(2006)
Appl. Phys. Lett.
, vol.89
, pp. 164105
-
-
Lam, E.W.1
Cooksey, G.A.2
Finlayson, B.A.3
Folch, A.4
-
37
-
-
84856048212
-
Nanoscale Surface Modifications to Control Capillary Flow Characteristics in PMMA Microfluidic Devices
-
Mukhopadhyay, S.; Roy, S.; D'Sa, A.; Mathur, A.; Holmes, J.; McLaughlin, A. Nanoscale Surface Modifications to Control Capillary Flow Characteristics in PMMA Microfluidic Devices Nanoscale Res. Lett. 2011, 6, 411 10.1186/1556-276X-6-411
-
(2011)
Nanoscale Res. Lett.
, vol.6
, pp. 411
-
-
Mukhopadhyay, S.1
Roy, S.2
D'Sa, A.3
Mathur, A.4
Holmes, J.5
McLaughlin, A.6
-
38
-
-
0040730144
-
Dielectric Constants of Some Organic solvent-water mixtures at various temperatures
-
Åkerlöf, G. Dielectric Constants of Some Organic solvent-water mixtures at various temperatures J. Am. Chem. Soc. 1932, 54, 4125-4139 10.1021/ja01350a001
-
(1932)
J. Am. Chem. Soc.
, vol.54
, pp. 4125-4139
-
-
Åkerlöf, G.1
-
39
-
-
0035902370
-
Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods
-
Jana, N. R.; Gearheart, L.; Murphy, C. J. Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods J. Phys. Chem. B 2001, 105, 4065-4067 10.1021/jp0107964
-
(2001)
J. Phys. Chem. B
, vol.105
, pp. 4065-4067
-
-
Jana, N.R.1
Gearheart, L.2
Murphy, C.J.3
-
40
-
-
70350482681
-
Pmma/Pdms Valves and Pumps for Disposable Microfluidics
-
Zhang, W.; Lin, S.; Wang, C.; Hu, J.; Li, C.; Zhuang, Z.; Zhou, Y.; Mathies, R. A.; Yang, C. J. Pmma/Pdms Valves and Pumps for Disposable Microfluidics Lab Chip 2009, 9, 3088-94 10.1039/b907254c
-
(2009)
Lab Chip
, vol.9
, pp. 3088-3094
-
-
Zhang, W.1
Lin, S.2
Wang, C.3
Hu, J.4
Li, C.5
Zhuang, Z.6
Zhou, Y.7
Mathies, R.A.8
Yang, C.J.9
|