메뉴 건너뛰기




Volumn 531, Issue , 2015, Pages 902-911

A statistical learning framework for groundwater nitrate models of the Central Valley, California, USA

Author keywords

Artificial neural networks; Bayesian networks; Boosted regression trees; Cross validation; Groundwater; Nitrate

Indexed keywords

ARTIFICIAL INTELLIGENCE; BAYESIAN NETWORKS; COMPLEX NETWORKS; DECISION TREES; FORECASTING; FORESTRY; GROUNDWATER; LANDFORMS; LEARNING SYSTEMS; LINEAR REGRESSION; NEURAL NETWORKS; NITRATES; REGRESSION ANALYSIS;

EID: 84948173143     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2015.10.025     Document Type: Article
Times cited : (125)

References (47)
  • 2
    • 84857342493 scopus 로고    scopus 로고
    • Using ensemble-based methods for directly estimating causal effects: an investigation of tree-based G-computation
    • Austin P.C. Using ensemble-based methods for directly estimating causal effects: an investigation of tree-based G-computation. Multivar. Behav. Res. 2012, 47(1):115-135. 10.1080/00273171.2012.640600.
    • (2012) Multivar. Behav. Res. , vol.47 , Issue.1 , pp. 115-135
    • Austin, P.C.1
  • 3
    • 33744799958 scopus 로고    scopus 로고
    • Modeling the probability of arsenic in groundwater in New England as a tool for exposure assessment
    • Ayotte J.D., et al. Modeling the probability of arsenic in groundwater in New England as a tool for exposure assessment. Environ. Sci. Technol. 2006, 40(11):3578-3585.
    • (2006) Environ. Sci. Technol. , vol.40 , Issue.11 , pp. 3578-3585
    • Ayotte, J.D.1
  • 4
    • 84885961675 scopus 로고    scopus 로고
    • Regression model for aquifer vulnerability assessment of nitrate pollution in the Osona region (NE Spain)
    • Boy-Roura M., Nolan B.T., Menció A., Mas-Pla J. Regression model for aquifer vulnerability assessment of nitrate pollution in the Osona region (NE Spain). J. Hydrol. 2013, 505:150-162.
    • (2013) J. Hydrol. , vol.505 , pp. 150-162
    • Boy-Roura, M.1    Nolan, B.T.2    Menció, A.3    Mas-Pla, J.4
  • 5
    • 84901043068 scopus 로고    scopus 로고
    • Assessment of regional change in nitrate concentrations in groundwater in the Central Valley, California, USA, 1950s-2000s
    • Burow K.R., Jurgens B.C., Belitz K., Dubrovsky N.M. Assessment of regional change in nitrate concentrations in groundwater in the Central Valley, California, USA, 1950s-2000s. Environ. Earth Sci. 2013, 69:2609-2621.
    • (2013) Environ. Earth Sci. , vol.69 , pp. 2609-2621
    • Burow, K.R.1    Jurgens, B.C.2    Belitz, K.3    Dubrovsky, N.M.4
  • 6
    • 34247115449 scopus 로고    scopus 로고
    • Boosted trees for ecological modeling and prediction
    • De'ath G. Boosted trees for ecological modeling and prediction. Ecology 2007, 88(1):243-251.
    • (2007) Ecology , vol.88 , Issue.1 , pp. 243-251
    • De'ath, G.1
  • 7
    • 51949111620 scopus 로고
    • Smearing estimate: a nonparametric retransformation method
    • Duan N. Smearing estimate: a nonparametric retransformation method. J. Am. Stat. Assoc. 1983, 78:605-610.
    • (1983) J. Am. Stat. Assoc. , vol.78 , pp. 605-610
    • Duan, N.1
  • 8
    • 80052391358 scopus 로고    scopus 로고
    • The Quality of our Nation's Waters-Nutrients in the Nation's Streams and Groundwater, 1992-2004
    • Dubrovsky, N.M. et al., 2010. The Quality of our Nation's Waters-Nutrients in the Nation's Streams and Groundwater, 1992-2004. U.S. Geological Survey Circular 1350.
    • (2010) U.S. Geological Survey Circular 1350.
    • Dubrovsky, N.M.1
  • 9
    • 84948133344 scopus 로고    scopus 로고
    • California Department of Water Resources. (accessed January 2011).
    • DWR, 2013. Land and Water Use Data Collections. California Department of Water Resources. (accessed January 2011). http://www.water.ca.gov/landwateruse/.
    • (2013) Land and Water Use Data Collections
  • 10
    • 44849118698 scopus 로고    scopus 로고
    • A working guide to boosted regression trees
    • Elith J., Leathwick J.R., Hastie T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77(4):802-813. 10.1111/j.1365-2656.2008.01390.x.
    • (2008) J. Anim. Ecol. , vol.77 , Issue.4 , pp. 802-813
    • Elith, J.1    Leathwick, J.R.2    Hastie, T.3
  • 11
    • 84975464895 scopus 로고    scopus 로고
    • (accessed June 2014).
    • ESRI, 2014. ArcGIS for Desktop. (accessed June 2014). http://www.esri.com/software/arcgis/arcgis-for-desktop/index.html.
    • (2014) ArcGIS for Desktop
  • 13
    • 84907553859 scopus 로고    scopus 로고
    • A cross-validation package driving Netica with python
    • Fienen M.N., Plant N.G. A cross-validation package driving Netica with python. Environ. Model. Softw. 2014, 63:14-23.
    • (2014) Environ. Model. Softw. , vol.63 , pp. 14-23
    • Fienen, M.N.1    Plant, N.G.2
  • 15
    • 51849123312 scopus 로고    scopus 로고
    • Trends of pesticides and nitrate in ground water of the Central Columbia Plateau, Washington, 1993-2003
    • Frans L. Trends of pesticides and nitrate in ground water of the Central Columbia Plateau, Washington, 1993-2003. J. Environ. Qual. 2008, 37(suppl. 5):S273-S280. 10.2134/jeq2007.0491.
    • (2008) J. Environ. Qual. , vol.37 , pp. S273-S280
    • Frans, L.1
  • 16
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: a gradient boosting machine
    • Friedman J.H. Greedy function approximation: a gradient boosting machine. Ann. Stat. 2001, 29(5):1189-1232.
    • (2001) Ann. Stat. , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 17
    • 0037186544 scopus 로고    scopus 로고
    • Stochastic gradient boosting
    • Friedman J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38(4):367-378. 10.1016/S0167-9473(01)00065-2.
    • (2002) Comput. Stat. Data Anal. , vol.38 , Issue.4 , pp. 367-378
    • Friedman, J.H.1
  • 18
    • 19044378630 scopus 로고    scopus 로고
    • Predicting ground water nitrate concentration from land use
    • Gardner K.K., Vogel R.M. Predicting ground water nitrate concentration from land use. Ground Water 2005, 43(3):343-352. 10.1111/j.1745-6584.2005.0031.x.
    • (2005) Ground Water , vol.43 , Issue.3 , pp. 343-352
    • Gardner, K.K.1    Vogel, R.M.2
  • 19
    • 84884965841 scopus 로고    scopus 로고
    • County-level Estimates of Nitrogen and Phosphorus from Commercial Fertilizer for the Conterminous United States, 1987-2006
    • Gronberg, J.M., Spahr, N.E., 2012. County-level Estimates of Nitrogen and Phosphorus from Commercial Fertilizer for the Conterminous United States, 1987-2006. U.S. Geological Survey Scientific Investigations Report 2012-5207.
    • (2012) U.S. Geological Survey Scientific Investigations Report 2012-5207.
    • Gronberg, J.M.1    Spahr, N.E.2
  • 20
    • 84871390883 scopus 로고    scopus 로고
    • Neuralnet: training of neural networks
    • Günther F., Fritsch S. Neuralnet: training of neural networks. R J. 2010, 2(1):30-38.
    • (2010) R J. , vol.2 , Issue.1 , pp. 30-38
    • Günther, F.1    Fritsch, S.2
  • 21
    • 84861877051 scopus 로고    scopus 로고
    • Vulnerability of recently recharged groundwater in principle aquifers of the United States to nitrate contamination
    • Gurdak J.J., Qi S.L. Vulnerability of recently recharged groundwater in principle aquifers of the United States to nitrate contamination. Environ. Sci. Technol. 2012, 46(11):6004-6012.
    • (2012) Environ. Sci. Technol. , vol.46 , Issue.11 , pp. 6004-6012
    • Gurdak, J.J.1    Qi, S.L.2
  • 23
    • 84903171126 scopus 로고    scopus 로고
    • Statistical analysis correlating changing agronomic practices with nitrate concentrations in a karst aquifer in Ireland
    • Huebsch M., et al. Statistical analysis correlating changing agronomic practices with nitrate concentrations in a karst aquifer in Ireland. WIT Trans. Ecol. Environ. 2014, 182:99-109. 10.2495/WP140091.
    • (2014) WIT Trans. Ecol. Environ. , vol.182 , pp. 99-109
    • Huebsch, M.1
  • 24
    • 84923064362 scopus 로고    scopus 로고
    • Integrating indicator-based geostatistical estimation and aquifer vulnerability of nitrate-N for establishing groundwater protection zones
    • Jang C.S., Chen S.K. Integrating indicator-based geostatistical estimation and aquifer vulnerability of nitrate-N for establishing groundwater protection zones. J. Hydrol. 2015, 523:441-451. 10.1016/j.jhydrol.2015.01.077.
    • (2015) J. Hydrol. , vol.523 , pp. 441-451
    • Jang, C.S.1    Chen, S.K.2
  • 25
    • 84941187536 scopus 로고    scopus 로고
    • Temporal variability of nitrate concentration in groundwater affected by intensive agricultural activities in a rural area of Hongseong, South Korea
    • Ki M.G., Koh D.C., Yoon H., Kim H.S. Temporal variability of nitrate concentration in groundwater affected by intensive agricultural activities in a rural area of Hongseong, South Korea. Environ. Earth Sci. 2015, 74(7):6147-6161. 10.1007/s12665-015-4637-7.
    • (2015) Environ. Earth Sci. , vol.74 , Issue.7 , pp. 6147-6161
    • Ki, M.G.1    Koh, D.C.2    Yoon, H.3    Kim, H.S.4
  • 27
    • 34250666699 scopus 로고    scopus 로고
    • Spatial analysis of land use and shallow groundwater vulnerability in the watershed adjacent to Assateague Island National Seashore, Maryland and Virginia, USA
    • LaMotte A.E., Greene E.A. Spatial analysis of land use and shallow groundwater vulnerability in the watershed adjacent to Assateague Island National Seashore, Maryland and Virginia, USA. Environ. Geol. 2007, 52(7):1413-1421. 10.1007/s00254-006-0583-8.
    • (2007) Environ. Geol. , vol.52 , Issue.7 , pp. 1413-1421
    • LaMotte, A.E.1    Greene, E.A.2
  • 28
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomForest
    • Liaw A., Wiener M. Classification and regression by randomForest. R News 2002, 2(3):18-22.
    • (2002) R News , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 30
    • 21644439704 scopus 로고    scopus 로고
    • Nitrate contamination in private wells in rural Alabama, United States
    • Liu A., Ming J., Ankumah R.O. Nitrate contamination in private wells in rural Alabama, United States. Sci. Total Environ. 2005, 346(1-3):112-120. 10.1016/j.scitotenv.2004.11.019.
    • (2005) Sci. Total Environ. , vol.346 , Issue.1-3 , pp. 112-120
    • Liu, A.1    Ming, J.2    Ankumah, R.O.3
  • 31
    • 84890114291 scopus 로고    scopus 로고
    • Probability-based nitrate contamination map of groundwater in Kinmen
    • Liu C.W., Wang Y.B., Jang C.S. Probability-based nitrate contamination map of groundwater in Kinmen. Environ. Monit. Assess. 2013, 185(12):10147-10156. 10.1007/s10661-013-3319-8.
    • (2013) Environ. Monit. Assess. , vol.185 , Issue.12 , pp. 10147-10156
    • Liu, C.W.1    Wang, Y.B.2    Jang, C.S.3
  • 32
    • 34047138821 scopus 로고    scopus 로고
    • High dimensional classification with Bayesian neural networks and Dirichlet diffusion trees
    • Springer, Berlin-Heidelberg, I. Guyon, M. Nikravesh, S. Gunn, L. Zadeh (Eds.)
    • Neal R., Zhang J. High dimensional classification with Bayesian neural networks and Dirichlet diffusion trees. Feature Extraction: Foundations and Applications 2006, 265-296. Springer, Berlin-Heidelberg. 10.1007/978-3-540-35488-8_11. I. Guyon, M. Nikravesh, S. Gunn, L. Zadeh (Eds.).
    • (2006) Feature Extraction: Foundations and Applications , pp. 265-296
    • Neal, R.1    Zhang, J.2
  • 33
    • 0037092475 scopus 로고    scopus 로고
    • Probability of nitrate contamination of recently recharged groundwaters in the conterminous United States
    • Nolan B.T., Hitt K.J., Ruddy B.C. Probability of nitrate contamination of recently recharged groundwaters in the conterminous United States. Environ. Sci. Technol. 2002, 36(10):2138-2145.
    • (2002) Environ. Sci. Technol. , vol.36 , Issue.10 , pp. 2138-2145
    • Nolan, B.T.1    Hitt, K.J.2    Ruddy, B.C.3
  • 34
    • 84900993125 scopus 로고    scopus 로고
    • Modeling nitrate at domestic and public-supply well depths in the Central Valley, California
    • Nolan B.T., Gronberg J.M., Faunt C.C., Eberts S.M., Belitz K. Modeling nitrate at domestic and public-supply well depths in the Central Valley, California. Environ. Sci. Technol. 2014, 48(10):5643-5651. 10.1021/es405452q.
    • (2014) Environ. Sci. Technol. , vol.48 , Issue.10 , pp. 5643-5651
    • Nolan, B.T.1    Gronberg, J.M.2    Faunt, C.C.3    Eberts, S.M.4    Belitz, K.5
  • 35
    • 84948186436 scopus 로고    scopus 로고
    • (accessed January 2014).
    • Norsys Software Corp., 2014. Netica, Version 5.12. (accessed January 2014). http://www.norsys.com/.
    • (2014) Netica, Version 5.12.
  • 40
    • 84893025944 scopus 로고    scopus 로고
    • Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: a case study in an agricultural setting (Southern Spain)
    • Rodriguez-Galiano V., Mendes M.P., Garcia-Soldado M.J., Chica-Olmo M., Ribeiro L. Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: a case study in an agricultural setting (Southern Spain). Sci. Total Environ. 2014, 476-477:189-206. 10.1016/j.scitotenv.2014.01.001.
    • (2014) Sci. Total Environ. , pp. 189-206
    • Rodriguez-Galiano, V.1    Mendes, M.P.2    Garcia-Soldado, M.J.3    Chica-Olmo, M.4    Ribeiro, L.5
  • 41
    • 33645183455 scopus 로고    scopus 로고
    • Probability of Detecting Atrazine/Desethyl-atrazine and Elevated Concentrations of Nitrate in Ground Water in Colorado
    • Rupert, M.G., 2003. Probability of Detecting Atrazine/Desethyl-atrazine and Elevated Concentrations of Nitrate in Ground Water in Colorado. U.S. Geological Survey Water-Resources Investigations Report 02-4269.
    • (2003) U.S. Geological Survey Water-Resources Investigations Report 02-4269.
    • Rupert, M.G.1
  • 43
    • 84875272535 scopus 로고    scopus 로고
    • Soil Survey Geographic (SSURGO) Database
    • (accessed June 2011).
    • USDA, 2014. Soil Survey Geographic (SSURGO) Database. USDA Natural Resources Conservation Service. (accessed June 2011). http://sdmdataaccess.nrcs.usda.gov/.
    • (2014) USDA Natural Resources Conservation Service
  • 44
    • 84948142837 scopus 로고    scopus 로고
    • National Water Information System Web (NWISWeb)
    • (accessed January 2011).
    • USGS, 2005. National Water Information System Web (NWISWeb). U.S. Geological Survey. (accessed January 2011). http://waterdata.usgs.gov/nwis/about.
    • (2005) U.S. Geological Survey
  • 45
    • 84855958355 scopus 로고    scopus 로고
    • Relations that Affect the Probability and Prediction of Nitrate Concentration in Private Wells in the Glacial Aquifer System in the United States
    • Warner, K.L., Arnold, T.L., 2010. Relations that Affect the Probability and Prediction of Nitrate Concentration in Private Wells in the Glacial Aquifer System in the United States. U.S. Geological Survey Scientific Investigations Report 2010-5100.
    • (2010) U.S. Geological Survey Scientific Investigations Report 2010-5100.
    • Warner, K.L.1    Arnold, T.L.2
  • 46
    • 84938099241 scopus 로고    scopus 로고
    • Modeling groundwater nitrate concentrations in private wells in Iowa
    • Wheeler D.C., Nolan B.T., Flory A.R., DellaValle C.T., Ward M.H. Modeling groundwater nitrate concentrations in private wells in Iowa. Sci. Total Environ. 2015, 536:481-488. 10.1016/j.scitotenv.2015.07.080.
    • (2015) Sci. Total Environ. , vol.536 , pp. 481-488
    • Wheeler, D.C.1    Nolan, B.T.2    Flory, A.R.3    DellaValle, C.T.4    Ward, M.H.5
  • 47
    • 0003899721 scopus 로고    scopus 로고
    • STATSGO Soil Characteristics for the Conterminous United States
    • (accessed July 2012)
    • Wolock, D.M., 1997. STATSGO Soil Characteristics for the Conterminous United States, U.S. Geological Survey Open-File Report 97-656. (accessed July 2012). http://water.usgs.gov/GIS/metadata/usgswrd/XML/muid.xml#Top.
    • (1997) U.S. Geological Survey Open-File Report 97-656.
    • Wolock, D.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.