-
1
-
-
0033685442
-
Formal verification ofiterativ e algorithms in microprocessors
-
M. D. Aagaard, R. B. Jones, R. Kaivola, K. R. Kohatsu, and C.-J. H. Seger. Formal verification ofiterativ e algorithms in microprocessors. Proceedings Design Automation Conference (DAC 2000), pages 201 – 206, 2000.
-
(2000)
Proceedings Design Automation Conference (DAC 2000)
-
-
Aagaard, M.D.1
Jones, R.B.2
Kaivola, R.3
Kohatsu, K.R.4
Seger, C.-J.H.5
-
4
-
-
0002795146
-
Mechanically Verifying Real-Valued Algorithms in ACL2
-
PhD thesis
-
R. Gamboa. Mechanically Verifying Real-Valued Algorithms in ACL2. PhD thesis, University ofT exas at Austin, 1999.
-
(1999)
University Oft Exas at Austin
-
-
Gamboa, R.1
-
5
-
-
0036163520
-
The correctness ofthe Fast Fourier Trasnform: A structured proof in ACL2
-
R. Gamboa. The correctness ofthe Fast Fourier Trasnform: A structured proof in ACL2. FormalMetho ds in System Design, 20:91–106, January 2002.
-
(2002)
Formalmetho Ds in System Design
, vol.20 January
, pp. 91-106
-
-
Gamboa, R.1
-
8
-
-
84949677773
-
Verifying the accuracy of polynomial approximations in HOL
-
E. L. Gunter and A. Felty, editors, Springer-Verlag
-
J. Harrison. Verifying the accuracy of polynomial approximations in HOL. In E. L. Gunter and A. Felty, editors, Theorem Proving in Higher Order Logics: 10th InternationalConfer ence, TPHOLs’97, volume 1275 of LNCS, pages 137–152. Springer-Verlag, 1997.
-
(1997)
Theorem Proving in Higher Order Logics: 10Th Internationalconfer Ence, TPHOLs’97, Volume 1275 of LNCS
, pp. 137-152
-
-
Harrison, J.1
-
9
-
-
84947223461
-
Formal verification offloating point trigonometric functions
-
W. A. Hunt and S. D. Johnson, editors, Springer-Verlag
-
J. Harrison. Formal verification offloating point trigonometric functions. In W. A. Hunt and S. D. Johnson, editors, FormalMetho ds in Computer-Aided Design: Third InternationalConfer ence FMCAD 2000, volume 1954 of LNCS, pages 217–233. Springer-Verlag, 2000.
-
(2000)
Formalmetho Ds in Computer-Aided Design: Third Internationalconfer Ence FMCAD 2000, Volume 1954 of LNCS
, pp. 217-233
-
-
Harrison, J.1
-
11
-
-
0002776276
-
Modular proof: The fundamental theorem of calculus
-
M. Kaufmann, P. Manolios, and J. S. Moore, editors
-
M. Kaufmann. Modular proof: The fundamental theorem of calculus. In M. Kaufmann, P. Manolios, and J. S. Moore, editors, Computer-Aided Reasoning: ACL2 Case Studies, chapter 6. Kluwer Academic Press, 2000.
-
(2000)
Computer-Aided Reasoning: ACL2 Case Studies, Chapter 6. Kluwer Academic Press
-
-
Kaufmann, M.1
-
13
-
-
84948128197
-
-
Available on the world-wide web at
-
E. Nelson. On-line books: Internal set theory. Available on the world-wide web at http://www.math.princeton.edu/˜nelson/books.html.
-
On-Line Books: Internal Set Theory
-
-
Nelson, E.1
-
15
-
-
0000291586
-
Formally verifying
-
Feb
-
J. O’Leary, X. Zhao, R. Gerth, and C.-J. H. Seger. Formally verifying IEEE compliance offloating-p oint hardware. IntelT echnology Journal, Q1, Feb. 1999.
-
(1999)
IEEE Compliance Offloating-P Oint Hardware. Intelt Echnology Journal, Q1
-
-
’Leary, J.O.1
Zhao, X.2
Gerth, R.3
Seger, C.-J.H.4
-
16
-
-
84948144429
-
Non-Standard Analysis
-
A. Robert. Non-Standard Analysis. John Wiley, 1988.
-
(1988)
John Wiley
-
-
Robert, A.1
-
17
-
-
84948135019
-
Model theory and non-standard arithmetic, infinitistic methods
-
A. Robinson. Model theory and non-standard arithmetic, infinitistic methods. In Symposium on Foundations of Mathematics, 1959.
-
(1959)
Symposium on Foundations of Mathematics
-
-
Robinson, A.1
-
18
-
-
0032649111
-
A Mechanically Checked ProofofCorrectness ofthe AMDK5 Floating-Point Square Root Microcode
-
D. Russinoff. A Mechanically Checked ProofofCorrectness ofthe AMDK5 Floating-Point Square Root Microcode. FormalMetho ds in System Design, 14(1), 1999.
-
(1999)
Formalmetho Ds in System Design
, vol.14
, Issue.1
-
-
Russinoff, D.1
-
19
-
-
84948170886
-
A Mechanically Checked ProofofIEEE Compliance ofthe Floating Point Multiplication, Division, and Square Root Algorithm ofthe AMDK7 Processor
-
D. M. Russinoff. A Mechanically Checked ProofofIEEE Compliance ofthe Floating Point Multiplication, Division, and Square Root Algorithm ofthe AMDK7 Processor. J. Comput. Math. (UK), 1, 1998.
-
(1998)
J. Comput. Math. (UK), 1
-
-
Russinoff, D.M.1
-
21
-
-
84948123752
-
Formal verification ofdivide and square algorithms using series calculation
-
May
-
J. Sawada. Formal verification ofdivide and square algorithms using series calculation. Technical Report RC22444, IBM, May 2002.
-
(2002)
Technical Report RC22444, IBM
-
-
Sawada, J.1
|