메뉴 건너뛰기




Volumn 298, Issue , 2016, Pages 261-267

Plastic changes to dendritic spines on layer V pyramidal neurons are involved in the rectifying role of the prefrontal cortex during the fast period of motor learning

Author keywords

Dendritic spines; Motor activity; Motor learning; Plasticity; Prefrontal cortex; Rat

Indexed keywords

ADULT; ANIMAL EXPERIMENT; ARTICLE; BRANCHED SPINE; CONTROLLED STUDY; DENDRITIC SPINE; GOLGI COMPLEX; LEARNING; MALE; MOTOR PERFORMANCE; NERVE CELL PLASTICITY; NERVE EXCITABILITY; NEUROMODULATION; NONHUMAN; PHYSICAL PARAMETERS; PREFRONTAL CORTEX; PRIORITY JOURNAL; PYRAMIDAL NERVE CELL; RAT; SPINE DENSITY; STUBBY SPINE; THIN SPINE; ANIMAL; CYTOLOGY; MICROPHOTOGRAPHY; MOTOR ACTIVITY; PHYSIOLOGY; SPRAGUE DAWLEY RAT;

EID: 84947983144     PISSN: 01664328     EISSN: 18727549     Source Type: Journal    
DOI: 10.1016/j.bbr.2015.11.013     Document Type: Article
Times cited : (20)

References (50)
  • 1
    • 0002083263 scopus 로고    scopus 로고
    • Oganization of movement
    • McGraw Hill, México, D.F, E.R. Kandel, J.H. Schwartz, T.M. Jessel (Eds.)
    • Ghez C., Krakauer J. Oganization of movement. Principles of Neural Science 2000, McGraw Hill, México, D.F. 4th ed. E.R. Kandel, J.H. Schwartz, T.M. Jessel (Eds.).
    • (2000) Principles of Neural Science
    • Ghez, C.1    Krakauer, J.2
  • 2
    • 0032116811 scopus 로고    scopus 로고
    • A neuropsychological theory of motor skill learning
    • Willingham D.B. A neuropsychological theory of motor skill learning. Psychol. Rev. 1998, 105:558-584.
    • (1998) Psychol. Rev. , vol.105 , pp. 558-584
    • Willingham, D.B.1
  • 4
    • 84911974163 scopus 로고    scopus 로고
    • Modes of exercise training for intermittent claudication
    • Lauret G.J., et al. Modes of exercise training for intermittent claudication. Cochrane Database Syst. Rev. 2014, 4(7).
    • (2014) Cochrane Database Syst. Rev. , vol.4 , Issue.7
    • Lauret, G.J.1
  • 5
    • 84875803287 scopus 로고    scopus 로고
    • Core exercise evaluate trunk stability to facilitate skilled motor behavior of the upper extremities
    • Miyake Y., et al. Core exercise evaluate trunk stability to facilitate skilled motor behavior of the upper extremities. J. Bodyw. Mov. Ther. 2013, 17(2):259-265.
    • (2013) J. Bodyw. Mov. Ther. , vol.17 , Issue.2 , pp. 259-265
    • Miyake, Y.1
  • 6
    • 79960083269 scopus 로고    scopus 로고
    • Motor skill learning, retention, and control deficits in Parkinson's diseases
    • Pendt L.K., Reuter I., Müller H. Motor skill learning, retention, and control deficits in Parkinson's diseases. PLoS One 2011, 6(7).
    • (2011) PLoS One , vol.6 , Issue.7
    • Pendt, L.K.1    Reuter, I.2    Müller, H.3
  • 7
    • 84947943818 scopus 로고    scopus 로고
    • Neuroanatomía funcional de los sistemas de memoria
    • Bios Medica, México, I. González-Burgos (Ed.)
    • González-Burgos I. Neuroanatomía funcional de los sistemas de memoria. Psicobiología de la memoria: Un enfoque interdisciplinario 2015, 15-49. Bios Medica, México. I. González-Burgos (Ed.).
    • (2015) Psicobiología de la memoria: Un enfoque interdisciplinario , pp. 15-49
    • González-Burgos, I.1
  • 8
    • 32544433751 scopus 로고    scopus 로고
    • The role of striatum in initiation and execution of learned action sequences in rats
    • Bailey K.R., Mair R.G. The role of striatum in initiation and execution of learned action sequences in rats. J. Neurosci. 2006, 26:1016-1025.
    • (2006) J. Neurosci. , vol.26 , pp. 1016-1025
    • Bailey, K.R.1    Mair, R.G.2
  • 9
    • 0033925483 scopus 로고    scopus 로고
    • Synaptic organization of the basal ganglia
    • Bolam J.P., et al. Synaptic organization of the basal ganglia. J. Anat. 1999, 196:527-542.
    • (1999) J. Anat. , vol.196 , pp. 527-542
    • Bolam, J.P.1
  • 10
    • 84876861921 scopus 로고    scopus 로고
    • Cerebellar networks with the cerebral cortex and basal ganglia
    • Bostan A.C., Dum R.P., Strick P.L. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cognit. Sci. 2013, 17:241-254.
    • (2013) Trends Cognit. Sci. , vol.17 , pp. 241-254
    • Bostan, A.C.1    Dum, R.P.2    Strick, P.L.3
  • 11
    • 0034524427 scopus 로고    scopus 로고
    • Complementary roles of basal ganglia and cerebellum in learning and motor control
    • Doya K. Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr. Opin. Neurobiol. 2000, 10:732-739.
    • (2000) Curr. Opin. Neurobiol. , vol.10 , pp. 732-739
    • Doya, K.1
  • 12
    • 21544444147 scopus 로고    scopus 로고
    • Distinguishable brain activation networks for short- and long-term motor skill learning
    • Floyer-Lea A., Matthews P.M. Distinguishable brain activation networks for short- and long-term motor skill learning. J. Neurophysiol. 2005, 94:512-518.
    • (2005) J. Neurophysiol. , vol.94 , pp. 512-518
    • Floyer-Lea, A.1    Matthews, P.M.2
  • 13
    • 0036386204 scopus 로고    scopus 로고
    • Motor sequence learning with the nondominant left hand, A PET functional imaging study
    • Grafton S.T., Hazeltine E., Ivry R.B. Motor sequence learning with the nondominant left hand, A PET functional imaging study. Exp. Brain Res. 2002, 146:369-378.
    • (2002) Exp. Brain Res. , vol.146 , pp. 369-378
    • Grafton, S.T.1    Hazeltine, E.2    Ivry, R.B.3
  • 14
    • 0033862074 scopus 로고    scopus 로고
    • Imaging brain plasticity: conceptual and methodological issues-a theoretical review
    • Poldrack R.A. Imaging brain plasticity: conceptual and methodological issues-a theoretical review. Neuroimage 2000, 12:1-13.
    • (2000) Neuroimage , vol.12 , pp. 1-13
    • Poldrack, R.A.1
  • 15
    • 0031736616 scopus 로고    scopus 로고
    • Dynamic cortical involvement in implicit and explicit motor sequence learning. A PET study
    • Honda M., et al. Dynamic cortical involvement in implicit and explicit motor sequence learning. A PET study. Brain 1998, 121:2159-2173.
    • (1998) Brain , vol.121 , pp. 2159-2173
    • Honda, M.1
  • 16
    • 24644453515 scopus 로고    scopus 로고
    • Distinct basal ganglia territories are engaged in early and advanced motor sequence learning
    • Lehéricy S., et al. Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proc. Natl. Acad. Sci. 2005, 102:12566-12571.
    • (2005) Proc. Natl. Acad. Sci. , vol.102 , pp. 12566-12571
    • Lehéricy, S.1
  • 17
    • 0009723349 scopus 로고    scopus 로고
    • Presupplementary motor area activation during sequence learning reflects visuo-motor association
    • RC1
    • Sakai K. Presupplementary motor area activation during sequence learning reflects visuo-motor association. J. Neurosci. 1999, 19. RC1.
    • (1999) J. Neurosci. , vol.19
    • Sakai, K.1
  • 18
    • 0029122510 scopus 로고
    • Functional MRI evidence for adult motor cortex plasticity during motor skill learning
    • Karni A. Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 1995, 377:155-158.
    • (1995) Nature , vol.377 , pp. 155-158
    • Karni, A.1
  • 19
    • 44549088145 scopus 로고    scopus 로고
    • Training-induced structural changes in the adult human brain
    • Draganski B., May A. Training-induced structural changes in the adult human brain. Behav. Brain Res. 2008, 192:137-142.
    • (2008) Behav. Brain Res. , vol.192 , pp. 137-142
    • Draganski, B.1    May, A.2
  • 20
    • 33747355203 scopus 로고    scopus 로고
    • Magnetic resonance-based morphometry: a window into structural plasticity of the brain
    • May A., Gaser C. Magnetic resonance-based morphometry: a window into structural plasticity of the brain. Curr. Opin. Neurol. 2006, 19:407-411.
    • (2006) Curr. Opin. Neurol. , vol.19 , pp. 407-411
    • May, A.1    Gaser, C.2
  • 21
    • 1342331387 scopus 로고    scopus 로고
    • Neuroplasticity: changes in grey matter induced by training
    • Draganski B., et al. Neuroplasticity: changes in grey matter induced by training. Nature 2004, 427:311-312.
    • (2004) Nature , vol.427 , pp. 311-312
    • Draganski, B.1
  • 22
    • 0028430586 scopus 로고
    • Glial hypertrophy is associated with synaptogenesis following motor-skill learning: but not with angiogenesis following exercise
    • Anderson B.J. Glial hypertrophy is associated with synaptogenesis following motor-skill learning: but not with angiogenesis following exercise. Glia 1994, 11:73-80.
    • (1994) Glia , vol.11 , pp. 73-80
    • Anderson, B.J.1
  • 23
    • 0037409821 scopus 로고    scopus 로고
    • Environmental complexity has different effects on the structure of neurons in the prefrontal cortex versus the parietal cortex or nucleus accumbens
    • Kolb B., Gorny G., Söderpalm A.H., Robinson T.E. Environmental complexity has different effects on the structure of neurons in the prefrontal cortex versus the parietal cortex or nucleus accumbens. Synapse 2003, 48:149-153.
    • (2003) Synapse , vol.48 , pp. 149-153
    • Kolb, B.1    Gorny, G.2    Söderpalm, A.H.3    Robinson, T.E.4
  • 24
    • 28444486903 scopus 로고    scopus 로고
    • Experience induces structural and biochemical changes in the adult primate brain
    • Kozorovitskiy Y. Experience induces structural and biochemical changes in the adult primate brain. Proc. Natl. Acad. Sci. U. S. A. 2005, 102:17478-17482.
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 17478-17482
    • Kozorovitskiy, Y.1
  • 25
    • 84943797553 scopus 로고    scopus 로고
    • The motor learning induces plastic changes in dendritic spines of Purkinje cells from the neocerebellar cortex of the rat
    • González-Tapia D., Velázquez-Zamora D.A., Olvera-Cortés M.E., González-Burgos I. The motor learning induces plastic changes in dendritic spines of Purkinje cells from the neocerebellar cortex of the rat. Restor. Neurol. Neurosci. 2015, 33(5):639-645.
    • (2015) Restor. Neurol. Neurosci. , vol.33 , Issue.5 , pp. 639-645
    • González-Tapia, D.1    Velázquez-Zamora, D.A.2    Olvera-Cortés, M.E.3    González-Burgos, I.4
  • 26
    • 34848865042 scopus 로고    scopus 로고
    • Morphological changes in dendritic spines of Purkinje cells associated with motor learning
    • Lee J. Morphological changes in dendritic spines of Purkinje cells associated with motor learning. Neurobiol. Learn. Mem. 2007, 88:445-450.
    • (2007) Neurobiol. Learn. Mem. , vol.88 , pp. 445-450
    • Lee, J.1
  • 27
    • 0032079220 scopus 로고    scopus 로고
    • Selective synaptic plasticity within the cerebellar cortex following complex motor skill learning
    • Kleim J.A. Selective synaptic plasticity within the cerebellar cortex following complex motor skill learning. Neurobiol. Learn. Mem. 1998, 69:274-289.
    • (1998) Neurobiol. Learn. Mem. , vol.69 , pp. 274-289
    • Kleim, J.A.1
  • 28
    • 0014893358 scopus 로고
    • Optimal central nervous system preservation with glutaraldehyde perfusion for ultrastructural study
    • Feria-Velasco A., Karnovsky M.J. Optimal central nervous system preservation with glutaraldehyde perfusion for ultrastructural study. Arch. Invest. Med. 1970, 1(3):201-220.
    • (1970) Arch. Invest. Med. , vol.1 , Issue.3 , pp. 201-220
    • Feria-Velasco, A.1    Karnovsky, M.J.2
  • 30
    • 0026675132 scopus 로고
    • Golgi method without osmium tetroxide for the study of the central nervous system
    • González-Burgos I., Tapia-Arizmendi G., Feria-Velasco A. Golgi method without osmium tetroxide for the study of the central nervous system. Biotech. Histochem. 1992, 67:288-296.
    • (1992) Biotech. Histochem. , vol.67 , pp. 288-296
    • González-Burgos, I.1    Tapia-Arizmendi, G.2    Feria-Velasco, A.3
  • 31
    • 84892239604 scopus 로고    scopus 로고
    • Dendritic spines plasticity and learning/memory processes: theory, evidence and perspectives
    • Nova biomedical, New York, United States
    • González Burgos I. Dendritic spines plasticity and learning/memory processes: theory, evidence and perspectives. Dendritic Spines Biochemistry, Modeling and Properties 2009, Nova biomedical, New York, United States.
    • (2009) Dendritic Spines Biochemistry, Modeling and Properties
    • González Burgos, I.1
  • 32
    • 84864291774 scopus 로고    scopus 로고
    • From synaptic transmission to cognition: an intermediary role for dendritic spines
    • González-Burgos I. From synaptic transmission to cognition: an intermediary role for dendritic spines. Brain Cognit. 2012, 80:177-183.
    • (2012) Brain Cognit. , vol.80 , pp. 177-183
    • González-Burgos, I.1
  • 33
    • 0025180876 scopus 로고
    • Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats
    • Black J.E. Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc. Natl. Acad. Sci. U. S. A. 1990, 87:5568-5572.
    • (1990) Proc. Natl. Acad. Sci. U. S. A. , vol.87 , pp. 5568-5572
    • Black, J.E.1
  • 34
    • 84929502952 scopus 로고    scopus 로고
    • How task complexity and stimulus modality affect motor execution: target accuracy, response timing and hesitations
    • Parrington L., MacMahon C., Ball K. How task complexity and stimulus modality affect motor execution: target accuracy, response timing and hesitations. J. Mot. Behav. 2015, 47(4):343-351.
    • (2015) J. Mot. Behav. , vol.47 , Issue.4 , pp. 343-351
    • Parrington, L.1    MacMahon, C.2    Ball, K.3
  • 35
    • 80052935497 scopus 로고    scopus 로고
    • Human sensorimotor learning: adaptation, skill, and beyond
    • Krakaue J.W., Mazzoni P. Human sensorimotor learning: adaptation, skill, and beyond. Curr. Opin. Neurobiol. 2011, 21(4):636-644.
    • (2011) Curr. Opin. Neurobiol. , vol.21 , Issue.4 , pp. 636-644
    • Krakaue, J.W.1    Mazzoni, P.2
  • 36
    • 81855175363 scopus 로고    scopus 로고
    • Modulation of motor performance and motor learning by transcranial direct current stimulation
    • Reis J., Fritsch B. Modulation of motor performance and motor learning by transcranial direct current stimulation. Curr. Opin. Neurol. 2011, 24:590-596.
    • (2011) Curr. Opin. Neurol. , vol.24 , pp. 590-596
    • Reis, J.1    Fritsch, B.2
  • 37
    • 84922995083 scopus 로고    scopus 로고
    • Translational studies exploring neuroplasticity associated with motor skill learning and the regulatory role of the dopamine system
    • Diaz-Heijtz R., Forssberg H. Translational studies exploring neuroplasticity associated with motor skill learning and the regulatory role of the dopamine system. Dev. Med. Child Neurol. 2015, 57(2):10-14.
    • (2015) Dev. Med. Child Neurol. , vol.57 , Issue.2 , pp. 10-14
    • Diaz-Heijtz, R.1    Forssberg, H.2
  • 38
    • 0031012167 scopus 로고    scopus 로고
    • Learning-dependent synaptic modifications in the cerebellar cortex of the adult rat persist for at least four weeks
    • Jeffrey A., et al. Learning-dependent synaptic modifications in the cerebellar cortex of the adult rat persist for at least four weeks. J. Neurosci. 1997, 17(2):717-721.
    • (1997) J. Neurosci. , vol.17 , Issue.2 , pp. 717-721
    • Jeffrey, A.1
  • 39
    • 0030237080 scopus 로고    scopus 로고
    • Motor-skill learning: changes in synaptic organization of the rat cerebellar cortex
    • Anderson B., Alcantaraa A., Greenough W.T. Motor-skill learning: changes in synaptic organization of the rat cerebellar cortex. Neurobiol. Learn. Mem. 1996, 66(2):221-229.
    • (1996) Neurobiol. Learn. Mem. , vol.66 , Issue.2 , pp. 221-229
    • Anderson, B.1    Alcantaraa, A.2    Greenough, W.T.3
  • 40
    • 80052917905 scopus 로고    scopus 로고
    • Synaptic mechanisms of sensoriomotor learning in the cerebellum
    • Carey M.R. Synaptic mechanisms of sensoriomotor learning in the cerebellum. Curr. Opin. Neurobiol. 2011, 21:609-615.
    • (2011) Curr. Opin. Neurobiol. , vol.21 , pp. 609-615
    • Carey, M.R.1
  • 41
    • 0001729031 scopus 로고
    • Electron microscopy of synaptic contacts of dendritic spines of the cerebral cortex
    • Gray E.G. Electron microscopy of synaptic contacts of dendritic spines of the cerebral cortex. Nature 1959, 183:1592-1594.
    • (1959) Nature , vol.183 , pp. 1592-1594
    • Gray, E.G.1
  • 42
    • 84938408154 scopus 로고    scopus 로고
    • Subtypes-specific plasticity of inhibitory circuits in motor cortex during motor learning
    • Chen S.X., Kim A.N., Peters A.J., Komiyama T. Subtypes-specific plasticity of inhibitory circuits in motor cortex during motor learning. Nat. Neurosci. 2015, 18(8):1109-1115.
    • (2015) Nat. Neurosci. , vol.18 , Issue.8 , pp. 1109-1115
    • Chen, S.X.1    Kim, A.N.2    Peters, A.J.3    Komiyama, T.4
  • 43
    • 84862776703 scopus 로고    scopus 로고
    • Repetitive motor learning induces coordinated formation of clustered dendritic spines in vivo
    • Fu M., Yu X., Lu J., Zuo Y. Repetitive motor learning induces coordinated formation of clustered dendritic spines in vivo. Nature 2012, 483(7387):92-95.
    • (2012) Nature , vol.483 , Issue.7387 , pp. 92-95
    • Fu, M.1    Yu, X.2    Lu, J.3    Zuo, Y.4
  • 44
    • 84906777754 scopus 로고    scopus 로고
    • Learning-induced structural plasticity in the cerebellum
    • Nishiyama H. Learning-induced structural plasticity in the cerebellum. Int. Rev. Neurobiol. 2014, 117:1-19.
    • (2014) Int. Rev. Neurobiol. , vol.117 , pp. 1-19
    • Nishiyama, H.1
  • 45
    • 0037120220 scopus 로고    scopus 로고
    • Specific plasticity of parallel fiber/Purkinje cell spine synapses by motor skill learning
    • Kim H.T., et al. Specific plasticity of parallel fiber/Purkinje cell spine synapses by motor skill learning. Neuroreport 2002, 16(13):1607-1610.
    • (2002) Neuroreport , vol.16 , Issue.13 , pp. 1607-1610
    • Kim, H.T.1
  • 46
    • 0030910639 scopus 로고    scopus 로고
    • Anatomy of motor learning. I. Frontal cortex and attention to action
    • Jueptner M., et al. Anatomy of motor learning. I. Frontal cortex and attention to action. J. Neurophysiol. 1997, 77(3):1313-1324.
    • (1997) J. Neurophysiol. , vol.77 , Issue.3 , pp. 1313-1324
    • Jueptner, M.1
  • 47
    • 3042554012 scopus 로고    scopus 로고
    • Structural basis of long-term potentiation in single dendritic spines
    • Matsuzaki M., Honkura N., Ellis-Davies G.C.R., Kasai H. Structural basis of long-term potentiation in single dendritic spines. Nature 2004, 429:761-766.
    • (2004) Nature , vol.429 , pp. 761-766
    • Matsuzaki, M.1    Honkura, N.2    Ellis-Davies, G.C.R.3    Kasai, H.4
  • 48
    • 0038015543 scopus 로고    scopus 로고
    • Structure-stability-function relationships of dendritic spines
    • Kasai H., et al. Structure-stability-function relationships of dendritic spines. Trends Neurosci. 2003, 26:360-368.
    • (2003) Trends Neurosci. , vol.26 , pp. 360-368
    • Kasai, H.1
  • 49
    • 0025639099 scopus 로고
    • Contributions of dendritic spines and perforated synapses to synaptic plasticity
    • Calverley R.K.S., Jones D.G. Contributions of dendritic spines and perforated synapses to synaptic plasticity. Bain Res. Rev. 1990, 15:215-249.
    • (1990) Bain Res. Rev. , vol.15 , pp. 215-249
    • Calverley, R.K.S.1    Jones, D.G.2
  • 50
    • 0033668572 scopus 로고    scopus 로고
    • Prefrontocortical serotonin depletion results in plastic changes of prefrontocortical pyramidal neurons, underlying a greater efficiency of short-term memory
    • Pérez-Vega M.E., Feria-Velasco A., González-Burgos I. Prefrontocortical serotonin depletion results in plastic changes of prefrontocortical pyramidal neurons, underlying a greater efficiency of short-term memory. Brain Res. Bull. 2000, 53:291-300.
    • (2000) Brain Res. Bull. , vol.53 , pp. 291-300
    • Pérez-Vega, M.E.1    Feria-Velasco, A.2    González-Burgos, I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.