메뉴 건너뛰기




Volumn 1224, Issue , 1997, Pages 170-182

Finite-element methods with local triangulation refinement for continuous reinforcement learning problems

Author keywords

[No Author keywords available]

Indexed keywords

DYNAMIC PROGRAMMING; DYNAMICS; FINITE ELEMENT METHOD; MACHINE LEARNING; OPTIMAL CONTROL SYSTEMS; REINFORCEMENT LEARNING; STRUCTURAL DYNAMICS; TRIANGULATION;

EID: 84947933152     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-62858-4_82     Document Type: Conference Paper
Times cited : (4)

References (17)
  • 2
    • 0004059199 scopus 로고
    • W. T. Miller, R. S. Sutton, P. J. Werbos editors. MIT press, Cambridge, Massachussetts
    • Andrew G. Barto. Neural networks for control. W. T. Miller, R. S. Sutton, P. J. Werbos editors. MIT press, Cambridge, Massachussetts, 1990.
    • (1990) Neural Networks for Control
    • Barto, A.G.1
  • 6
    • 0003294328 scopus 로고
    • Controlled Markov Processes and Viscosity Solutions
    • Springer-Verlag
    • Wendell H. Fleming and H. Mete Soner. Controlled Markov Processes and Viscosity Solutions. Applications of Mathematics. Springer-Verlag, 1993.
    • (1993) Applications of Mathematics
    • Fleming, W.H.1    Mete Soner, H.2
  • 8
    • 79957749002 scopus 로고    scopus 로고
    • Reinforcement learning applied to a differential game
    • Mance E. Harmon, Leemon C. Baird, and A. Harry Klopf. Reinforcement learning applied to a differential game. Adaptive Behavior, 4:3-28, 1996.
    • (1996) Adaptive Behavior , vol.4 , pp. 3-28
    • Harmon, M.E.1    Baird, L.C.2    Harry Klopf, A.3
  • 9
    • 0025484857 scopus 로고
    • Numerical methods for stochastic control problems in continuous time. SIAM
    • Harold J. Kushner. Numerical methods for stochastic control problems in continuous time. SIAM J. Control and Optimization, 28:999-1048, 1990.
    • (1990) J. Control and Optimization , vol.28 , pp. 999-1048
    • Kushner, H.J.1
  • 12
    • 0343506477 scopus 로고    scopus 로고
    • A convergent reinforcement learning algorithm in the continuous case: The finite-element t{einforcement learning
    • R. Munos. A convergent reinforcement learning algorithm in the continuous case: the finite-element t{einforcement learning. International Conference on Machine Learning, 1996.
    • (1996) International Conference on Machine Learning
    • Munos, R.1
  • 14
    • 0042405252 scopus 로고
    • A delaunay refinement algorithm for quality 2-dimensional mesh generation
    • Jim Ruppert. A delaunay refinement algorithm for quality 2-dimensional mesh generation. Journal of Algorithms, 1994.
    • (1994) Journal of Algorithms
    • Ruppert, J.1
  • 15
    • 0000723997 scopus 로고    scopus 로고
    • Generalization in reinforcement learning: Successful examples using sparse coarse coding
    • Richard S. Sutton. Generalization in reinforcement learning: Successful examples using sparse coarse coding. Advances in Neural Information Processing Systems, 8, 1996.
    • (1996) Advances in Neural Information Processing Systems , vol.8
    • Sutton, R.S.1
  • 16
    • 0019563697 scopus 로고
    • Computing the n-dimensional delaunay tessellation with application to voronoi polytopes
    • D. F. Watson. Computing the n-dimensional delaunay tessellation with application to voronoi polytopes. The Computer Journal, 24:167-172, 1981.
    • (1981) The Computer Journal , vol.24 , pp. 167-172
    • Watson, D.F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.