메뉴 건너뛰기




Volumn 997, Issue , 1995, Pages 80-94

Inductive constraint logic

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; COMPUTER PROGRAMMING; FORMAL LOGIC;

EID: 84947905415     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: None     Document Type: Conference Paper
Times cited : (81)

References (24)
  • 2
    • 34249966007 scopus 로고
    • The CN2 algorithm
    • P. Clark and T. Niblett. The CN2 algorithm. Machine Learning, 3(4):261-284, 1989.
    • (1989) Machine Learning , vol.3 , Issue.4 , pp. 261-284
    • Clark, P.1    Niblett, T.2
  • 3
    • 0028529173 scopus 로고
    • First order jk-clausal theo­ries are pac-learnable
    • L. De Raedt and S. Džeroski. First order jk-clausal theo­ries are pac-learnable. Artificial Intelligence, 70:375-392, 1994.
    • (1994) Artificial Intelligence , vol.70 , pp. 375-392
    • De Raedt, L.1    Džeroski, S.2
  • 7
    • 0024082469 scopus 로고
    • Quantifying inductive bias : Al learning algorithms and Valiant’s learning framework
    • D. Haussler. Quantifying inductive bias : Al learning algorithms and Valiant’s learning framework. Artificial Intelligence, 36:177-221, 1988.
    • (1988) Artificial Intelligence , vol.36 , pp. 177-221
    • Haussler, D.1
  • 8
    • 0026459988 scopus 로고
    • Drug de­sign by machine learning: The use of inductive logic programming to model the structure- activity relationships of trimethoprim analogues binding to dihydrofolate reductase
    • R. D. King, S. Muggleton, R.A. Lewis, and M.J.E. Sternberg. Drug de­sign by machine learning: the use of inductive logic programming to model the structure- activity relationships of trimethoprim analogues binding to dihydrofolate reductase. Pro­ceedings of the National Academy of Sciences, 89(23), 1992.
    • (1992) Pro­ceedings of the National Academy of Sciences , vol.89 , Issue.23
    • King, R.D.1    Muggleton, S.2    Lewis, R.A.3    Sternberg, M.J.E.4
  • 11
    • 0003046842 scopus 로고
    • Learning from observation: Conceptual clustering
    • R.S Michalski, J.G. Carbonell, and T.M. Mitchell, editors, Tioga Publishing Company
    • R. S. Michalski and R.E. Stepp. Learning from observation: conceptual clustering. In R.S Michalski, J.G. Carbonell, and T.M. Mitchell, editors, Ma­chine Learning: an artificial intelligence approach, volume 1. Tioga Publishing Company, 1983.
    • (1983) Ma­chine Learning: An Artificial Intelligence Approach , vol.1
    • Michalski, R.S.1    Stepp, R.E.2
  • 12
    • 0003046840 scopus 로고
    • A theory and methodology of inductive learning
    • R.S Michalski, J.G. Carbonell, and T.M. Mitchell, editors, Morgan Kaufmann
    • R. S. Michalski. A theory and methodology of inductive learning. In R.S Michalski, J.G. Carbonell, and T.M. Mitchell, editors, Machine Learning: an artificial intelligence approach, volume 1. Morgan Kaufmann, 1983.
    • (1983) Machine Learning: An Artificial Intelligence Approach , vol.1
    • Michalski, R.S.1
  • 13
    • 0011020176 scopus 로고
    • Encouraging experimented results on learning cnf
    • R. J. Mooney. Encouraging experimented results on learning cnf. Machine Learning, 19:79-92, 1995.
    • (1995) Machine Learning , vol.19 , pp. 79-92
    • Mooney, R.J.1
  • 17
    • 0001602577 scopus 로고
    • A note on inductive generalization
    • Edinburgh University Press
    • G. Plotkin. A note on inductive generalization. In Machine Intelligence, volume 5, pages 153-163. Edinburgh University Press, 1970.
    • (1970) Machine Intelligence , vol.5 , pp. 153-163
    • Plotkin, G.1
  • 18
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 19
    • 0001172265 scopus 로고
    • Learning logical definitions from relations
    • J. R. Quinlan. Learning logical definitions from relations. Machine Learn­ing, 5:239-266, 1990.
    • (1990) Machine Learn­ing , vol.5 , pp. 239-266
    • Quinlan, J.R.1
  • 20
    • 84934555448 scopus 로고
    • Flattening and saturation: Two representation changes for generalization
    • C. Rouveirol. Flattening and saturation: Two representation changes for generalization. Machine Learning, 14:219-232, 1994.
    • (1994) Machine Learning , vol.14 , pp. 219-232
    • Rouveirol, C.1
  • 22
    • 0342280994 scopus 로고
    • Mutagenesis: Dp experiments in a non-determinate biological domain
    • S. Wrobel, ed­itor, of GMD-Studien, Gesellschaft fur Mathematik und Datenver- arbeitung MBH
    • A. Srinivasan, S. H. Muggleton, R. D. King, and M. J. E. Sternberg. Mutagenesis: Dp experiments in a non-determinate biological domain. In S. Wrobel, ed­itor, Proceedings of the 4th International Workshop on Inductive Logic Programming, volume 237 of GMD-Studien, pages 217-232. Gesellschaft fur Mathematik und Datenver- arbeitung MBH, 1994.
    • (1994) Proceedings of the 4Th International Workshop on Inductive Logic Programming , vol.237 , pp. 217-232
    • Srinivasan, A.1    Muggleton, S.H.2    King, R.D.3    Sternberg, M.J.E.4
  • 23
    • 0039387935 scopus 로고
    • Subsumption and refinement in model inference
    • P. Brazdil, editor, of Lecture Notes in Artificial Intelligence, Springer-Verlag
    • P. R. J. van der Laag and S.-H. Nienhuys-Cheng. Subsumption and refinement in model inference. In P. Brazdil, editor, Proceedings of the 6th European Conference on Machine Learning, volume 667 of Lecture Notes in Artificial Intelligence, pages 95-114. Springer-Verlag, 1993.
    • (1993) Proceedings of the 6Th European Conference on Machine Learning , vol.667 , pp. 95-114
    • Van Der Laag, P.R.J.1    Nienhuys-Cheng, S.-H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.