-
1
-
-
0013013983
-
Star unfolding of a polytope with applications
-
P. K. Agarwal, B. Aronov, J. O’Rourke, and C. A. Schevon. Star unfolding of a polytope with applications. SIAM J. Comput., 26:1689-1713, 1997.
-
(1997)
SIAM J. Comput
, vol.26
, pp. 1689-1713
-
-
Agarwal, P.K.1
Aronov, B.2
O’Rourke, J.3
Schevon, C.A.4
-
2
-
-
0002084322
-
-
Akademie-Verlag, Berlin, West Germany
-
A. D. Alexandrov. Konvexe Polyeder. Akademie-Verlag, Berlin, West Germany, 1958.
-
(1958)
Konvexe Polyeder
-
-
Alexandrov, A.D.1
-
3
-
-
21144464875
-
Non-overlap of the star unfolding
-
B. Aronov and J. O’Rourke. Non-overlap of the star unfolding. Discrete Comput. Geom., 8:219-250, 1992.
-
(1992)
Discrete Comput. Geom
, vol.8
, pp. 219-250
-
-
Aronov, B.1
O’Rourke, J.2
-
4
-
-
84947810671
-
-
T. Biedl, E. Demaine, M. Demaine, A. Lubiw, J. O’Rourke, M. Overmars, S. Robbins, I. Streinu, and S. Whitesides. On reconfiguring tree linkages: Trees can lock. In Proc. 10th Canad. Conf. Comput. Geom., pages 45, 1998. Fuller version in Electronic Proc. http://cgm.cs.mcgill.ca/cccg98/proceedings/.
-
-
-
Biedl, T.1
Demaine, E.2
Demaine, M.3
Lubiw, A.4
O’Rourke, J.5
Overmars, M.6
Robbins, S.7
Streinu, I.8
Whitesides, S.9
-
5
-
-
84947809845
-
-
T. Biedl, E. Demaine, M. Demaine, A. Lubiw, J. O’Rourke, M. Overmars, S. Robbins, and S. Whitesides. Unfolding some classes of orthogonal polyhedra. In Proc. 10th Canad. Conf. Comput. Geom., pages 7071, 1998. Fuller version in Electronic Proc. http://cgm.cs.mcgill.ca/cccg98/proceedings/.
-
-
-
Biedl, T.1
Demaine, E.2
Demaine, M.3
Lubiw, A.4
O’Rourke, J.5
Overmars, M.6
Robbins, S.7
Whitesides, S.8
-
6
-
-
0032761917
-
Locked and unlocked polygonal chains in 3D
-
January
-
T. Biedl, E. Demaine, M. Demaine, S. Lazard, A. Lubiw, J. O’Rourke, M. Overmars, S. Robbins, I. Streinu, G. Toussaint, and S. Whitesides. Locked and unlocked polygonal chains in 3D. In Proc. 10th ACM-SIAM Sympos. Discrete Algorithms, pages 866-867, January 1999.
-
(1999)
Proc. 10Th ACM-SIAM Sympos. Discrete Algorithms
, pp. 866-867
-
-
Biedl, T.1
Demaine, E.2
Demaine, M.3
Lazard, S.4
Lubiw, A.5
O’Rourke, J.6
Demaine, M.7
Overmarsrobbins, S.8
Streinu, I.9
Toussaint, G.10
Whitesides, S.11
-
7
-
-
84947741517
-
-
M. Bern, E. Demaine, D. Eppstein, and E. Kuo. Ununfoldable polyhedra. In Proc. 11th Canad. Conf. Comput. Geom., pages 13-16, 1999. Full version: LANL archive paper number cs. CG/9908003.
-
-
-
Bern, M.1
Demaine, E.2
Eppstein, D.3
Kuo, E.4
-
8
-
-
84947783297
-
-
Technical Report CS-99-03, Univ. Waterloo, Ontario
-
T. C. Biedl, E. Demaine, S. Lazard, S. Robbins, and M. Soss. Convexifying monotone polygons. Technical Report CS-99-03, Univ. Waterloo, Ontario, 1999.
-
(1999)
Convexifying Monotone Polygons
-
-
Biedl, T.C.1
Demaine, E.2
Lazard, S.3
Robbins, S.4
Soss, M.5
-
10
-
-
1542575510
-
Nontrivial embeddings of polygonal intervals and unknots in 3-space
-
J. Cantarella and H. Johnston. Nontrivial embeddings of polygonal intervals and unknots in 3-space. J. Knot Theory Ramifications, 7:1027-1039, 1998.
-
(1998)
J. Knot Theory Ramifications
, vol.7
, pp. 1027-1039
-
-
Cantarella, J.1
Johnston, H.2
-
11
-
-
0002268787
-
-
Technical Report 063, Smith College, Northampton, MA, July, Full version of proceedings abstract. LANL archive paper number cs. CG/9908005
-
R. Cocan and J. O’Rourke. Polygonal chains cannot lock in 4D. Technical Report 063, Smith College, Northampton, MA, July 1999. Full version of proceedings abstract. LANL archive paper number cs. CG/9908005.
-
(1999)
Polygonal Chains Cannot Lock in 4D
-
-
Cocan, R.1
O’Rourke, J.2
-
13
-
-
0004223416
-
-
Cambridge University Press
-
P. Cromwell. Polyhedra. Cambridge University Press, 1997.
-
(1997)
Polyhedra
-
-
Cromwell, P.1
-
14
-
-
0032656219
-
-
E. Demaine, M. Demaine, A. Lubiw, J. O’Rourke, and I. Pashchenko. Metamorphosis of the cube. In Proc. 15th. Annu. ACM Sympos. Comput. Geom., pages 409-410, 1999. Video and abstract.
-
-
-
Demaine, E.1
Demaine, M.2
Lubiw, A.3
O’Rourke, J.4
Pashchenko, I.5
-
16
-
-
0012962476
-
Solution to problem 3763
-
B. de, Sz. Nagy. Solution to problem 3763. Amer. Math. Monthly, 46:176-177, 1939.
-
(1939)
Amer. Math. Monthly
, vol.46
, pp. 176-177
-
-
De, B.1
Nagy, S.Z.2
-
17
-
-
84947768449
-
-
A. Dürer. The painter’s manual: a manual of measurement of lines, areas, and solids by means of compass and ruler assembled by Albrecht Dürer for the use of all lovers of art with appropriate illustrations arranged to be printed in the year MDXXV. New York: Abaris Books, 1977, 1538. Translated and with a commentary by Walter L. Strauss.
-
-
-
Dürer, A.1
-
18
-
-
0001607250
-
Convex-ifying star-shaped polygons
-
H. Everett, S. Lazard, S. Robbins, H. Schröder, and S. Whitesides. Convex- ifying star-shaped polygons. In Proc. 10th Canad. Conf. Comput. Geom., pages 2-3, 1998.
-
(1998)
Proc.10Th Canad. Conf. Comput. Geom
, pp. 2-3
-
-
Everett, H.1
Lazard, S.2
Robbins, S.3
Schröder, H.4
Whitesides, S.5
-
20
-
-
0032291143
-
Automated process planning for sheet metal bending operations
-
S. K. Gupta, D. A. Bourne, K. H. Kim, and S. S. Krishnan. Automated process planning for sheet metal bending operations. J. Manufacturing Systems, 17(5):338-360, 1998.
-
(1998)
J. Manufacturing Systems
, vol.17
, Issue.5
, pp. 338-360
-
-
Gupta, S.K.1
Bourne, D.A.2
Kim, K.H.3
Krishnan, S.S.4
-
21
-
-
0012915578
-
How to convexify a polygon
-
July
-
Grünbaum. How to convexify a polygon. Geombinatorics, 5:24-30, July 1995.
-
(1995)
Geombinatorics
, vol.5
, pp. 24-30
-
-
Grünbaum1
-
22
-
-
84947775127
-
-
Technical Report 048, Dept. Comput. Sei., Smith College, June 1996. Presented at AMS Conf., 5 Oct
-
A. Lubiw and J. O’Rourke. When can a polygon fold to a polytope? Technical Report 048, Dept. Comput. Sei., Smith College, June 1996. Presented at AMS Conf., 5 Oct. 1996.
-
(1996)
When Can a Polygon Fold to a Polytope
-
-
Lubiw, A.1
O’Rourke, J.2
-
23
-
-
51249165461
-
Reconfiguring closed polygonal chains in Euclidean d-space
-
W. J. Lenhart and S. H. Whitesides. Reconfiguring closed polygonal chains in Euclidean d-space. Discrete Comput. Geom., 13:123-140, 1995.
-
(1995)
Discrete Comput. Geom
, vol.13
, pp. 123-140
-
-
Lenhart, W.J.1
Whitesides, S.H.2
-
25
-
-
33744566613
-
Unfolding 3-dimensional convex polytopes: A package for Mathematica 1.2 or 2.0
-
Univ. of Tokyo
-
M. Namiki and K. Fukuda. Unfolding 3-dimensional convex polytopes: A package for Mathematica 1.2 or 2.0. Mathematica Notebook, Univ. of Tokyo, 1993.
-
(1993)
Mathematica Notebook
-
-
Namiki, M.1
Fukuda, K.2
-
27
-
-
84976129349
-
Convex polytopes with convex nets
-
G. C. Shephard. Convex polytopes with convex nets. Math. Proc. Camb. Phil. Soc., 78:389-403, 1975.
-
(1975)
Math. Proc. Camb. Phil. Soc
, vol.78
, pp. 389-403
-
-
Shephard, G.C.1
-
28
-
-
84867980179
-
-
Technical Report JHU-87/20, Johns Hopkins Univ., Baltimore, MD, July
-
C. Schevon and J. O’Rourke. A conjecture on random unfoldings. Technical Report JHU-87/20, Johns Hopkins Univ., Baltimore, MD, July 1987.
-
(1987)
A Conjecture on Random Unfoldings
-
-
Schevon, C.1
O’Rourke, J.2
-
29
-
-
0022663554
-
On shortest paths in polyhedral spaces
-
M. Sharir and A. Schorr. On shortest paths in polyhedral spaces. SIAM J. Comput., 15:193-215, 1986.
-
(1986)
SIAM J. Comput
, vol.15
, pp. 193-215
-
-
Sharir, M.1
Schorr, A.2
-
30
-
-
84947785789
-
-
G. T. Toussaint. The Erdös-Nagy theorem and its ramifications. In Proc. 11th Canad. Conf. Comput. Geom., pages 9-12, 1999. Puller version in Electronic Proc. http://www.cs.ubc.ca/conferences/CCCG/elecproc.html.
-
-
-
Toussaint, G.T.1
|