-
1
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
Bauer, E. & Kohavi, R.: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. To appear in Machine Learning, (1999).
-
(1999)
Machine Learning
-
-
Bauer, E.1
Kohavi, R.2
-
2
-
-
0003408496
-
-
Irvine, CA: University of California, Department of Information and Computer Science
-
Blake, C., Keogh, E. & Merz, C.J.: UCI Repository of Machine Learning Databases [http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of California, Department of Information and Computer Science. (1998).
-
(1998)
UCI Repository of Machine Learning Databases
-
-
Blake, C.1
Keogh, E.2
Merz, C.J.3
-
3
-
-
0003619255
-
Bias, variance, and arcing classifiers
-
Department of Statistics, University of California, Berkeley, CA
-
Breiman, L.: Bias, variance, and arcing classifiers. Technical Report 460, Department of Statistics, University of California, Berkeley, CA. (1996).
-
(1996)
Technical Report 460
-
-
Breiman, L.1
-
5
-
-
0001929348
-
ASSISTANT 86: A knowledge-elicitation tool for sophisticated users
-
I. Bratko & N. Lavrac (eds.), Wilmslow, UK: Sigma Press
-
Cestnik, B., Kononenko, I., & Bratko, I.: ASSISTANT 86: A knowledge-elicitation tool for sophisticated users. In I. Bratko & N. Lavrac (eds.), Progress in Machine Learning - Proceedings of the Second European Working Session on Learning. (1987) 31-45. Wilmslow, UK: Sigma Press.
-
(1987)
Progress in Machine Learning - Proceedings of the Second European Working Session on Learning
, pp. 31-45
-
-
Cestnik, B.1
Kononenko, I.2
Bratko, I.3
-
6
-
-
0002419948
-
Beyond independence: Conditions for the optimality of the simple Bayesian classifier
-
San Francisco, CA: Morgan Kaufmann
-
Domingos, P. & Pazzani, M.: Beyond independence: Conditions for the optimality of the simple Bayesian classifier. Proceedings of the Thirteenth International Conference on Machine Learning. (1996) 105-112. San Francisco, CA: Morgan Kaufmann.
-
(1996)
Proceedings of the Thirteenth International Conference on Machine Learning
, pp. 105-112
-
-
Domingos, P.1
Pazzani, M.2
-
11
-
-
0003112380
-
Comparison of inductive and naive Bayesian learning approaches to automatic knowledge acquisition
-
B. Wielinga et al. (eds.), Amsterdam: IOS Press
-
Kononenko, I.: Comparison of inductive and naive Bayesian learning approaches to automatic knowledge acquisition. In B. Wielinga et al. (eds.), Current Trends in Knowledge Acguisition. Amsterdam: IOS Press. (1990).
-
(1990)
Current Trends in Knowledge Acguisition
-
-
Kononenko, I.1
-
13
-
-
0003612091
-
-
Ellis Horwood Limited
-
Michie, D., Spiegelhalter, D.J., & Taylor, C.C.: Machine Learning, Neural and Statistical Classification, Ellis Horwood Limited. (1994).
-
(1994)
Machine Learning, Neural and Statistical Classification
-
-
Michie, D.1
Spiegelhalter, D.J.2
Taylor, C.C.3
-
16
-
-
0002595663
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
Morgan Kaufmann
-
Schapire, R.E., Freund, Y., Bartlett, P. & Lee, W.S.: Boosting the margin: A new explanation for the effectiveness of voting methods. Proceedings of the Fourteenth International Conference on Machine Learning. (1997) 322-330. Morgan Kaufmann.
-
(1997)
Proceedings of the Fourteenth International Conference on Machine Learning
, pp. 322-330
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.3
Lee, W.S.4
-
17
-
-
84947737993
-
Improving the performance of boosting for naive Bayesian classification
-
Deakin University
-
Ting, K.M. & Zheng, Z.: Improving the performance of boosting for naive Bayesian classification. TR C99/01, School of Computing and Mathematics, Deakin University. (1999). [http://www3.cm.deakin.edu.au/~kmting].
-
(1999)
TR C99/01, School of Computing and Mathematics
-
-
Ting, K.M.1
Zheng, Z.2
|