-
1
-
-
58449095230
-
Product growth and mixing in finite groups
-
ACM, New York
-
L. Babai, N. Nikolov and L. Pyber, 'Product growth and mixing in finite groups', In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms (ACM, New York, 2008), 248-257.
-
(2008)
Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms
, pp. 248-257
-
-
Babai, L.1
Nikolov, N.2
Pyber, L.3
-
3
-
-
0001587222
-
On sets of integers which contain no three terms in arithmetic progression
-
F. A. Behrend, 'On sets of integers which contain no three terms in arithmetic progression', Proc. Natl. Acad. Sci. 32 (1946), 331-332.
-
(1946)
Proc. Natl. Acad. Sci.
, vol.32
, pp. 331-332
-
-
Behrend, F.A.1
-
5
-
-
0033269755
-
On triples in arithmetic progression
-
J. Bourgain, 'On triples in arithmetic progression', Geom. Funct. Anal. 9 (1999), 968-984.
-
(1999)
Geom. Funct. Anal.
, vol.9
, pp. 968-984
-
-
Bourgain, J.1
-
8
-
-
51249184670
-
An ergodic Szemerédi theorem for commuting transformations
-
H. Furstenberg and Y. Katznelson, 'An ergodic Szemerédi theorem for commuting transformations', J. Anal. Math. 34 (1978), 275-291 (1979).
-
(1979)
J. Anal. Math.
, vol.34
, Issue.1978
, pp. 275-291
-
-
Furstenberg, H.1
Katznelson, Y.2
-
9
-
-
0032361262
-
A new proof of Szemerédi's theorem for progressions of length four
-
W. T. Gowers, 'A new proof of Szemerédi's theorem for progressions of length four', Geom. Funct. Anal. 8(3) (1998), 529-551.
-
(1998)
Geom. Funct. Anal.
, vol.8
, Issue.3
, pp. 529-551
-
-
Gowers, W.T.1
-
10
-
-
0035618488
-
A new proof of Szemerédi's theorem
-
W. T. Gowers, 'A new proof of Szemerédi's theorem', Geom. Funct. Anal. 11(3) (2001), 465-588.
-
(2001)
Geom. Funct. Anal.
, vol.11
, Issue.3
, pp. 465-588
-
-
Gowers, W.T.1
-
11
-
-
41549141368
-
Hypergraph regularity and the multidimensional Szemerédi theorem
-
W. T. Gowers, 'Hypergraph regularity and the multidimensional Szemerédi theorem', Ann. of Math. (2) 166(3) (2007), 897-946.
-
(2007)
Ann. of Math. (2)
, vol.166
, Issue.3
, pp. 897-946
-
-
Gowers, W.T.1
-
12
-
-
42249083052
-
Quasirandom groups
-
W. T. Gowers, 'Quasirandom groups', Combin. Probab. Comput. 17(3) (2008), 363-387.
-
(2008)
Combin. Probab. Comput.
, vol.17
, Issue.3
, pp. 363-387
-
-
Gowers, W.T.1
-
13
-
-
76249111541
-
4(N)
-
Cambridge University Press, Cambridge
-
4(N)', In Analytic Number Theory (Cambridge University Press, Cambridge, 2009), 180-204.
-
(2009)
Analytic Number Theory
, pp. 180-204
-
-
Green, B.1
Tao, T.2
-
16
-
-
0001704592
-
On the minimal degrees of projective representations of the finite Chevalley groups
-
V. Landazuri and G. Seitz, 'On the minimal degrees of projective representations of the finite Chevalley groups', J. Algebra 32 (1974), 418-443.
-
(1974)
J. Algebra
, vol.32
, pp. 418-443
-
-
Landazuri, V.1
Seitz, G.2
-
17
-
-
0001018621
-
Number of points of varieties in finite fields
-
S. Lang and A. Weil, 'Number of points of varieties in finite fields', Amer. J. Math. 76 (1954), 819-827.
-
(1954)
Amer. J. Math.
, vol.76
, pp. 819-827
-
-
Lang, S.1
Weil, A.2
-
18
-
-
84855763533
-
Expander graphs in pure and applied mathematics
-
A. Lubotzky, 'Expander graphs in pure and applied mathematics', Bull. Amer. Math. Soc. (N.S.) 49(1) (2012), 113-162.
-
(2012)
Bull. Amer. Math. Soc. (N.S.)
, vol.49
, Issue.1
, pp. 113-162
-
-
Lubotzky, A.1
-
19
-
-
84863518438
-
A new proof of the density Hales-Jewett theorem
-
D. H. J. Polymath, 'A new proof of the density Hales-Jewett theorem', Ann. of Math. (2) 175(3) (2012), 1283-1327.
-
(2012)
Ann. of Math. (2)
, vol.175
, Issue.3
, pp. 1283-1327
-
-
Polymath, D.H.J.1
-
21
-
-
84973957311
-
Sets of integers containing not more than a given number of terms in arithmetical progression
-
R. A. Rankin, 'Sets of integers containing not more than a given number of terms in arithmetical progression', Proc. Roy. Soc. Edinburgh Sect. A 65 (1960/1961), 332-344.
-
(1960)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.65
, pp. 332-344
-
-
Rankin, R.A.1
-
22
-
-
35348964037
-
Regular partitions of hypergraphs: Regularity lemmas
-
V. Rödl and M. Schacht, 'Regular partitions of hypergraphs: regularity lemmas', Combin. Probab. Comput. 16(6) (2007), 833-885.
-
(2007)
Combin. Probab. Comput.
, vol.16
, Issue.6
, pp. 833-885
-
-
Rödl, V.1
Schacht, M.2
-
23
-
-
33644942504
-
Applications of the regularity lemma for uniform hypergraphs
-
V. Rödl and J. Skokan, 'Applications of the regularity lemma for uniform hypergraphs', Random Structures Algorithms 28(2) (2006), 180-194.
-
(2006)
Random Structures Algorithms
, vol.28
, Issue.2
, pp. 180-194
-
-
Rödl, V.1
Skokan, J.2
-
24
-
-
79960008630
-
On Roth's theorem on progressions
-
T. Sanders, 'On Roth's theorem on progressions', Ann. of Math. (2) 174(1) (2011), 619-636.
-
(2011)
Ann. of Math. (2)
, vol.174
, Issue.1
, pp. 619-636
-
-
Sanders, T.1
-
25
-
-
84976779342
-
Fast probabilistic algorithms for verification of polynomial identities
-
J. Schwartz, 'Fast probabilistic algorithms for verification of polynomial identities', J. ACM 27 (1980), 701-717.
-
(1980)
J. ACM
, vol.27
, pp. 701-717
-
-
Schwartz, J.1
-
26
-
-
0001549458
-
On sets of integers containing no k elements in arithmetic progression
-
E. Szemerédi, 'On sets of integers containing no k elements in arithmetic progression', Acta Arith. 27 (1975), 299-345.
-
(1975)
Acta Arith.
, vol.27
, pp. 299-345
-
-
Szemerédi, E.1
-
27
-
-
33746620574
-
A variant of the hypergraph removal lemma
-
T. Tao, 'A variant of the hypergraph removal lemma', J. Combin. Theory Ser. A 113(7) (2006), 1257-1280.
-
(2006)
J. Combin. Theory Ser. A
, vol.113
, Issue.7
, pp. 1257-1280
-
-
Tao, T.1
|