-
1
-
-
84913554110
-
Mixed order transition and condensation in an exactly soluble one dimensional spin model
-
A. Bar and D. Mukamel, Mixed order transition and condensation in an exactly soluble one dimensional spin model, J. Stat. Mech. (2014) P11001. 10.1088/1742-5468/2014/11/P11001
-
J. Stat. Mech.
, vol.2014
, pp. P11001
-
-
Bar, A.1
Mukamel, D.2
-
2
-
-
0346365713
-
The theory of equilibrium critical phenomena
-
M. E. Fisher, The theory of equilibrium critical phenomena, Rep. Prog. Phys. 30, 615 (1967). RPPHAG 0034-4885 10.1088/0034-4885/30/2/306
-
(1967)
Rep. Prog. Phys.
, vol.30
, pp. 615
-
-
Fisher, M.E.1
-
3
-
-
31144463331
-
The Ehrenfest classification of phase transitions: Introduction and evolution
-
G. Jeager, The Ehrenfest classification of phase transitions: Introduction and evolution, Arch. Hist. Exact Sci. 53, 51 (1998). 0003-9519 10.1007/s004070050021
-
(1998)
Arch. Hist. Exact Sci.
, vol.53
, pp. 51
-
-
Jeager, G.1
-
5
-
-
0001425873
-
-
edited by D. ter Haar, (Pergamon, Oxford), pp.
-
English Translation Collected Papers of L. D. Landau, edited by D. ter Haar, (Pergamon, Oxford, 1965), pp. 193-215.
-
(1965)
English Translation Collected Papers of
, pp. 193-215
-
-
Landau, L.D.1
-
6
-
-
74549195569
-
More is the Same; Phase Transitions and Mean Field Theories
-
L. P. Kadanoff, More is the Same; Phase Transitions and Mean Field Theories, J. Stat. Phys. 137, 777 (2009). JSTPBS 0022-4715 10.1007/s10955-009-9814-1
-
(2009)
J. Stat. Phys.
, vol.137
, pp. 777
-
-
Kadanoff, L.P.1
-
7
-
-
84892423737
-
Mixed-Order Phase Transition in a One-Dimensional Model
-
A. Bar and D. Mukamel, Mixed-Order Phase Transition in a One-Dimensional Model, Phys. Rev. Lett. 112, 015701 (2014). PRLTAO 0031-9007 10.1103/PhysRevLett.112.015701
-
(2014)
Phys. Rev. Lett.
, vol.112
, pp. 015701
-
-
Bar, A.1
Mukamel, D.2
-
9
-
-
84929120751
-
Extreme Thouless effect in a minimal model of dynamic social networks
-
K. E. Bassler, W. Liu, B. Schmittmann, and R. K. P. Zia, Extreme Thouless effect in a minimal model of dynamic social networks, Phys. Rev. E 91, 042102 (2015). PLEEE8 1539-3755 10.1103/PhysRevE.91.042102
-
(2015)
Phys. Rev. e
, vol.91
, pp. 042102
-
-
Bassler, K.E.1
Liu, W.2
Schmittmann, B.3
Zia, R.K.P.4
-
10
-
-
0034270141
-
First-order transition with power-law singularity in models with absorbing states
-
A. Lipowski, First-order transition with power-law singularity in models with absorbing states, Phys. Rev. E 62, 4401 (2000). 10.1103/PhysRevE.62.4401
-
(2000)
Phys. Rev. e
, vol.62
, pp. 4401
-
-
Lipowski, A.1
-
11
-
-
7244229813
-
Universality classes in nonequilibrium lattice systems
-
G. Ódor, Universality classes in nonequilibrium lattice systems, Rev. Mod. Phys. 76, 663 (2004). RMPHAT 0034-6861 10.1103/RevModPhys.76.663
-
(2004)
Rev. Mod. Phys.
, vol.76
, pp. 663
-
-
Ódor, G.1
-
12
-
-
84872914505
-
Extraordinary variability and sharp transitions in a maximally frustrated dynamic network
-
W. Liu, B. Schmittmann, and R. K. P. Zia, Extraordinary variability and sharp transitions in a maximally frustrated dynamic network, Europhys. Lett. 100, 66007 (2012). EULEEJ 0295-5075 10.1209/0295-5075/100/66007
-
(2012)
Europhys. Lett.
, vol.100
, pp. 66007
-
-
Liu, W.1
Schmittmann, B.2
Zia, R.K.P.3
-
13
-
-
84924390531
-
Anomalous Discontinuity at the Percolation Critical Point of Active Gels
-
M. Sheinman, A. Sharma, J. Alvarado, G. H. Koenderink, and F. C. MacKintosh, Anomalous Discontinuity at the Percolation Critical Point of Active Gels, Phys. Rev. Lett. 114, 098104 (2015). PRLTAO 0031-9007 10.1103/PhysRevLett.114.098104
-
(2015)
Phys. Rev. Lett.
, vol.114
, pp. 098104
-
-
Sheinman, M.1
Sharma, A.2
Alvarado, J.3
Koenderink, G.H.4
MacKintosh, F.C.5
-
14
-
-
0000435644
-
Long-Range Order in One-Dimensional Ising Systems
-
D. J. Thouless, Long-Range Order in One-Dimensional Ising Systems, Phys. Rev. 187, 732 (1969). PHRVAO 0031-899X 10.1103/PhysRev.187.732
-
(1969)
Phys. Rev.
, vol.187
, pp. 732
-
-
Thouless, D.J.1
-
15
-
-
70449094130
-
Nonlinear (Equation presented)-voter model
-
C. Castellano, M. A. Muñoz, and R. Pastor-Satorras, Nonlinear (Equation presented)-voter model, Phys. Rev. E 80, 041129 (2009). PLEEE8 1539-3755 10.1103/PhysRevE.80.041129
-
(2009)
Phys. Rev. e
, vol.80
, pp. 041129
-
-
Castellano, C.1
Muñoz, M.A.2
Pastor-Satorras, R.3
-
16
-
-
21044438011
-
Metastability in zero-temperature dynamics: Statistics of attractors
-
C. Godrèche and J. M. Luck, Metastability in zero-temperature dynamics: Statistics of attractors, J. Phys.: Condens. Matter 17, S2573 (2005). JCOMEL 0953-8984 10.1088/0953-8984/17/24/014
-
(2005)
J. Phys.: Condens. Matter
, vol.17
, pp. S2573
-
-
Godrèche, C.1
Luck, J.M.2
-
17
-
-
84875633825
-
Anticonformity or Independence? -Insights from Statistical Physics
-
P. Nyczka and K. Sznajd-Weron, Anticonformity or Independence? -Insights from Statistical Physics, J. Stat. Phys. 151, 174 (2013). JSTPBS 0022-4715 10.1007/s10955-013-0701-4
-
(2013)
J. Stat. Phys.
, vol.151
, pp. 174
-
-
Nyczka, P.1
Sznajd-Weron, K.2
-
18
-
-
37649028009
-
Freezing in Ising ferromagnets
-
V. Spirin, P. L. Krapivsky, and S. Redner, Freezing in Ising ferromagnets, Phys. Rev. E 65, 016119 (2001). 1063-651X 10.1103/PhysRevE.65.016119
-
(2001)
Phys. Rev. e
, vol.65
, pp. 016119
-
-
Spirin, V.1
Krapivsky, P.L.2
Redner, S.3
-
19
-
-
79953148076
-
Zero-temperature freezing in the three-dimensional kinetic Ising model
-
J. Olejarz, P. L. Krapivsky, and S. Redner, Zero-temperature freezing in the three-dimensional kinetic Ising model, Phys. Rev. E 83, 030104 (2011). PLEEE8 1539-3755 10.1103/PhysRevE.83.030104
-
(2011)
Phys. Rev. e
, vol.83
, pp. 030104
-
-
Olejarz, J.1
Krapivsky, P.L.2
Redner, S.3
-
20
-
-
27244455891
-
Metastabilities in the degenerated phase of the two-component model
-
K. Sznajd-Weron, Metastabilities in the degenerated phase of the two-component model, Phys. Rev. E 72, 026109 (2005). PLEEE8 1539-3755 10.1103/PhysRevE.72.026109
-
(2005)
Phys. Rev. e
, vol.72
, pp. 026109
-
-
Sznajd-Weron, K.1
-
21
-
-
84863892383
-
Phase transitions in the (Equation presented)-voter model with two types of stochastic driving
-
P. Nyczka, K. Sznajd-Weron, and J. Cislo, Phase transitions in the (Equation presented)-voter model with two types of stochastic driving, Phys. Rev. E 86, 011105 (2012). PLEEE8 1539-3755 10.1103/PhysRevE.86.011105
-
(2012)
Phys. Rev. e
, vol.86
, pp. 011105
-
-
Nyczka, P.1
Sznajd-Weron, K.2
Cislo, J.3
-
23
-
-
84937020011
-
Nonlinear (Equation presented)-voter model with inflexible zealots
-
M. Mobilia, Nonlinear (Equation presented)-voter model with inflexible zealots, Phys. Rev. E 92, 012803 (2015). PLEEE8 1539-3755 10.1103/PhysRevE.92.012803
-
(2015)
Phys. Rev. e
, vol.92
, pp. 012803
-
-
Mobilia, M.1
-
24
-
-
80054028862
-
Opinion dynamics as a movement in a bistable potential
-
P. Nyczka, K. Sznajd-Weron, and J. Cisło, Opinion dynamics as a movement in a bistable potential, Physica A 391, 317 (2012). PHYADX 0378-4371 10.1016/j.physa.2011.07.050
-
(2012)
Physica A
, vol.391
, pp. 317
-
-
Nyczka, P.1
Sznajd-Weron, K.2
Cisło, J.3
-
25
-
-
79960625377
-
Explosive Percolation is Continuous, but with Unusual Finite Size Behavior
-
P. Grassberger, C. Christensen, G. Bizhani, S. Son, and M. Paczuski, Explosive Percolation is Continuous, but with Unusual Finite Size Behavior, Phys. Rev. Lett. 106, 225701 (2011). PRLTAO 0031-9007 10.1103/PhysRevLett.106.225701
-
(2011)
Phys. Rev. Lett.
, vol.106
, pp. 225701
-
-
Grassberger, P.1
Christensen, C.2
Bizhani, G.3
Son, S.4
Paczuski, M.5
-
26
-
-
0000670935
-
Directed-percolation conjecture for cellular automata
-
G. Ódor and A. Szolnoki, Directed-percolation conjecture for cellular automata, Phys. Rev. E 53, 2231 (1996). 1063-651X 10.1103/PhysRevE.53.2231
-
(1996)
Phys. Rev. e
, vol.53
, pp. 2231
-
-
Ódor, G.1
Szolnoki, A.2
-
27
-
-
0034349279
-
Nonequilibrium kinetic Ising models: Phase transitions and universality classes in one dimension
-
N. Menyhárd and G. Ódor, Nonequilibrium kinetic Ising models: Phase transitions and universality classes in one dimension, Braz. J. Phys. 30, 113 (2000). 10.1590/S0103-97332000000100011
-
(2000)
Braz. J. Phys.
, vol.30
, pp. 113
-
-
Menyhárd, N.1
Ódor, G.2
|