메뉴 건너뛰기




Volumn 63, Issue 5, 2015, Pages 1447-1462

Remote Sensing Data Binary Classification Using Boosting with Simple Classifiers

Author keywords

artificial area; boosting; IKONOS; land cover classification

Indexed keywords

DECISION TREES; IMAGE PROCESSING; ITERATIVE METHODS; REMOTE SENSING; SATELLITE IMAGERY;

EID: 84947260887     PISSN: 18956572     EISSN: 18957455     Source Type: Journal    
DOI: 10.1515/acgeo-2015-0040     Document Type: Article
Times cited : (16)

References (19)
  • 1
    • 37249003229 scopus 로고    scopus 로고
    • Multiple classifier systems in remote sensing: From basics to recent developments
    • M. Haindl, J. Kittler, and F. Roli (eds.), Multiple Classifier Systems, Springer, Berlin Heidelberg
    • Benediktsson, J.A., J. Chanussot, and M. Fauvel (2007), Multiple classifier systems in remote sensing: from basics to recent developments. In:M. Haindl, J. Kittler, and F. Roli (eds.), Multiple Classifier Systems, Lecture Notes in Computer Science, Vol. 4472, Springer, Berlin Heidelberg, 501-512, DOI: 10.1007/978-3-540-72523-7-50.
    • (2007) Lecture Notes in Computer Science , vol.4472 , pp. 501-512
    • Benediktsson, J.A.1    Chanussot, J.2    Fauvel, M.3
  • 2
    • 0036821351 scopus 로고    scopus 로고
    • Multiple classifiers applied to multisource remote sensing data
    • Briem, G.J., J.A. Benediktsson, and J.R. Sveinsson (2002), Multiple classifiers applied to multisource remote sensing data, IEEE Trans. Geosci. Remote Sens. 40, 10, 2291-2299, DOI: 10.1109/TGRS.2002.802476.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.10 , pp. 2291-2299
    • Briem, G.J.1    Benediktsson, J.A.2    Sveinsson, J.R.3
  • 3
    • 84947248395 scopus 로고    scopus 로고
    • A literature review, 2001-2008, of classification methods and inner urban characteristics identified in multispectral remote sensing images
    • Brito, P.L., and J.A. Quintanilha (2012), A literature review, 2001-2008, of classification methods and inner urban characteristics identified in multispectral remote sensing images. In: Proc. 4th GEOBIA, 7-9 May 2012, Rio de Janeiro, Brazil, 586-591.
    • (2012) Proc. 4th GEOBIA, 7-9 May 2012, Rio de Janeiro, Brazil , pp. 586-591
    • Brito, P.L.1    Quintanilha, J.A.2
  • 4
    • 33750230352 scopus 로고    scopus 로고
    • Classification algorithms for biomedical volume datasets
    • R. Marin, E. Onaindia, A. Bugarin, and J. Santos (eds.) Springer, Berlin Heidelberg
    • Cerquides, J., M. López-Sánchez, S. Ontañón, E. Puertas, A. Puig, O. Pujol, and D. Tost (2006), Classification algorithms for biomedical volume datasets. In:R. Marin, E. Onaindia, A. Bugarin, and J. Santos (eds.), Current Topics in Artificial Intelligence, Springer, Berlin Heidelberg, 143-152, DOI: 10.1007/11881216-16.
    • (2006) Current Topics in Artificial Intelligence , pp. 143-152
    • Cerquides, J.1    López-Sánchez, M.2    Ontañón, S.3    Puertas, E.4    Puig, A.5    Pujol, O.6    Tost, D.7
  • 5
    • 43949125818 scopus 로고    scopus 로고
    • Evaluation of Random Forest and AdaBoost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery
    • Chan, J.C.W., and D. Paelinckx (2008), Evaluation of Random Forest and AdaBoost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery, Remote Sens. Environ. 112, 6, 2999-3011, DOI: 10.1016/j.rse.2008.02.011.
    • (2008) Remote Sens. Environ. , vol.112 , Issue.6 , pp. 2999-3011
    • Chan, J.C.W.1    Paelinckx, D.2
  • 6
    • 33748619838 scopus 로고    scopus 로고
    • Computer Science and Engineering Department, University of California, San Diego, USA
    • Dlagnekov, L. (2004), License Plate Detection using AdaBoost, Computer Science and Engineering Department, University of California, San Diego, USA.
    • (2004) License Plate Detection Using AdaBoost
    • Dlagnekov, L.1
  • 8
    • 0033100735 scopus 로고    scopus 로고
    • Maximizing land cover classification accuracies produced by decision trees at continental to global scales
    • Friedl, M.A., C.E. Brodley, and A.H. Strahler (1999), Maximizing land cover classification accuracies produced by decision trees at continental to global scales, IEEE Trans. Geosci. Remote Sens. 37, 2, 969-977, DOI: 10.1109/36.752215.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.2 , pp. 969-977
    • Friedl, M.A.1    Brodley, C.E.2    Strahler, A.H.3
  • 10
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • Holte, R.C. (1993), Very simple classification rules perform well on most commonly used datasets, Mach. Learn. 11, 1, 63-91, DOI: 10.1023/A:1022631118932.
    • (1993) Mach. Learn. , vol.11 , Issue.1 , pp. 63-91
    • Holte, R.C.1
  • 11
    • 4243617025 scopus 로고
    • University of Pennsylvania, Machine Learning class project, unpublished
    • Kearns, M. (1988), Thoughts on hypothesis boosting, University of Pennsylvania, Machine Learning class project, 105 pp. (unpublished).
    • (1988) Thoughts on Hypothesis Boosting
    • Kearns, M.1
  • 12
    • 1842431416 scopus 로고    scopus 로고
    • Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis
    • Lawrence, R., A. Bunn, S. Powell, and M. Zambon (2004), Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis, Remote Sens. Environ. 90, 3, 331-336, DOI: 10.1016/j.rse.2004.01.007.
    • (2004) Remote Sens. Environ. , vol.90 , Issue.3 , pp. 331-336
    • Lawrence, R.1    Bunn, A.2    Powell, S.3    Zambon, M.4
  • 13
    • 84947208705 scopus 로고    scopus 로고
    • Adaboost
    • Center for Machine Perception, Czech Technical University, Prague, Czech Republic
    • Matas, J., and J. Sochman (2001), Adaboost. Center for Machine Perception, Czech Technical University, Prague, Czech Republic.
    • (2001)
    • Matas, J.1    Sochman, J.2
  • 14
    • 0035439610 scopus 로고    scopus 로고
    • Estimating pixel-scale land cover classification confidence using nonparametric machine learning methods
    • McIver, D.K., and M.A. Friedl (2001), Estimating pixel-scale land cover classification confidence using nonparametric machine learning methods, IEEE Trans. Geosci. Remote Sens. 39, 9, 1959-1968, DOI: 10.1109/36.951086.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.9 , pp. 1959-1968
    • McIver, D.K.1    Friedl, M.A.2
  • 16
    • 77955326628 scopus 로고    scopus 로고
    • Mapping global urban areas using MODIS 500-m data: New methods and datasets based on 'urban ecoregions'
    • Schneider, A., M.A. Friedl, and D. Potere (2010), Mapping global urban areas using MODIS 500-m data: New methods and datasets based on 'urban ecoregions', Remote Sens. Environ. 114, 8, 1733-1746, DOI: 10.1016/j.rse.2010.03.003.
    • (2010) Remote Sens. Environ. , vol.114 , Issue.8 , pp. 1733-1746
    • Schneider, A.1    Friedl, M.A.2    Potere, D.3
  • 17
    • 0021518106 scopus 로고
    • A theory of the learnable
    • Valiant, L.G. (1984), A theory of the learnable, Commun. ACM 27, 11, 1134-1142, DOI: 10.1145/1968.1972.
    • (1984) Commun. ACM , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant, L.G.1
  • 18
    • 0035680116 scopus 로고    scopus 로고
    • Rapid object detection using a boosted cascade of simple features
    • Viola, P., and M. Jones (2001), Rapid object detection using a boosted cascade of simple features. In: Computer Vision and Pattern Recognition CVPR 2001, Vol. 1, I-511-I-518, DOI: 10.1109/CVPR.2001.990517.
    • (2001) Computer Vision and Pattern Recognition CVPR 2001 , vol.1 , pp. I511-I518
    • Viola, P.1    Jones, M.2
  • 19
    • 2142812371 scopus 로고    scopus 로고
    • Robust real-time face detection
    • Viola, P., and M.J. Jones (2004), Robust real-time face detection, Int. J. Comput. Vision 57, 2, 137-154, DOI: 10.1023/B:VISI.0000013087.49260.fb.
    • (2004) Int. J. Comput. Vision , vol.57 , Issue.2 , pp. 137-154
    • Viola, P.1    Jones, M.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.