메뉴 건너뛰기




Volumn 36, Issue 21, 2015, Pages 5403-5425

Agricultural drought monitoring using MODIS-based drought indices over the USA Corn Belt

Author keywords

[No Author keywords available]

Indexed keywords

AGRICULTURE; RADIOMETERS; SATELLITE IMAGERY;

EID: 84947215257     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431161.2015.1093190     Document Type: Article
Times cited : (47)

References (64)
  • 1
    • 79251529645 scopus 로고    scopus 로고
    • Evaluation of Drought Indices Based on Thermal Remote Sensing of Evapotranspiration over the Continental United States
    • M.C.Anderson,, C.Hain, B.Wardlow, A.Pimstein, J.R.Mecikalski, and W.P.Kustas. 2011. “Evaluation of Drought Indices Based on Thermal Remote Sensing of Evapotranspiration over the Continental United States.” Journal of Climate 24 (8): 2025–2044. doi:10.1175/2010JCLI3812.1.
    • (2011) Journal of Climate , vol.24 , Issue.8 , pp. 2025-2044
    • Anderson, M.C.1    Hain, C.2    Wardlow, B.3    Pimstein, A.4    Mecikalski, J.R.5    Kustas, W.P.6
  • 3
    • 85032531976 scopus 로고    scopus 로고
    • Historical Perspectives on AVHRR NDVI and Vegetation Drought Monitoring
    • Wardlow B.D., Andersen M.C., Verdin J.P., (eds), Boca Raton, FL: CRC Press
    • A.Anyamba,, and C.Tucker. 2012. “Historical Perspectives on AVHRR NDVI and Vegetation Drought Monitoring.” In Remote Sensing of Drought Innovative Monitoring Approaches, edited by B.D.Wardlow, M.C.Andersen, and J.P.Verdin, 23–50. Boca Raton, FL: CRC Press.
    • (2012) Remote Sensing of Drought Innovative Monitoring Approaches , pp. 23-50
    • Anyamba, A.1    Tucker, C.2
  • 4
    • 0035838578 scopus 로고    scopus 로고
    • NDVI Anomaly Patterns over Africa during the 1997/98 ENSO Warm Event
    • A.Anyamba,, C.Tucker, and J.R.Eastman. 2001. “NDVI Anomaly Patterns over Africa during the 1997/98 ENSO Warm Event.” International Journal of Remote Sensing 22 (10): 1847–1859. doi:10.1080/01431160010029156.
    • (2001) International Journal of Remote Sensing , vol.22 , Issue.10 , pp. 1847-1859
    • Anyamba, A.1    Tucker, C.2    Eastman, J.R.3
  • 5
    • 79960831514 scopus 로고    scopus 로고
    • Monitoring US Agriculture: The US Department of Agriculture, National Agricultural Statistics Service Cropland Data Layer Program
    • C.Boryan,, Z.Yang, R.Mueller, and M.Craig. 2011. “Monitoring US Agriculture: The US Department of Agriculture, National Agricultural Statistics Service Cropland Data Layer Program.” Geocarto International 26 (5): 341–358. doi:10.1080/10106049.2011.562309.
    • (2011) Geocarto International , vol.26 , Issue.5 , pp. 341-358
    • Boryan, C.1    Yang, Z.2    Mueller, R.3    Craig, M.4
  • 6
    • 41449106514 scopus 로고    scopus 로고
    • The Vegetation Drought Response Index (Vegdri): A New Integrated Approach for Monitoring Drought Stress in Vegetation
    • J.F.Brown,, B.D.Wardlow, T.Tadesse, M.J.Hayes, and B.C.Reed. 2008. “The Vegetation Drought Response Index (Vegdri): A New Integrated Approach for Monitoring Drought Stress in Vegetation.” Giscience & Remote Sensing 45 (1): 16–46. doi:10.2747/1548-1603.45.1.16.
    • (2008) Giscience & Remote Sensing , vol.45 , Issue.1 , pp. 16-46
    • Brown, J.F.1    Wardlow, B.D.2    Tadesse, T.3    Hayes, M.J.4    Reed, B.C.5
  • 7
    • 79960725295 scopus 로고    scopus 로고
    • Assessing the Sensitivity of MODIS to Monitor Drought in High Biomass Ecosystems
    • G.Caccamoa,, L.A.Chisholma, R.A.Bradstock, and M.L.Puotinena. 2011. “Assessing the Sensitivity of MODIS to Monitor Drought in High Biomass Ecosystems.” Remote Sensing of Environment 115 (10): 2626–2639. doi:10.1016/j.rse.2011.05.018.
    • (2011) Remote Sensing of Environment , vol.115 , Issue.10 , pp. 2626-2639
    • Caccamoa, G.1    Chisholma, L.A.2    Bradstock, R.A.3    Puotinena, M.L.4
  • 8
    • 0028685001 scopus 로고
    • A Method to Make Use of Thermal Infrared Temperature and NDVI Measurements to Infer Surface Soil Water Content and Fractional Vegetation Cover
    • T.N.Carlson,, R.R.Gillies, and E.M.Perry. 1994. “A Method to Make Use of Thermal Infrared Temperature and NDVI Measurements to Infer Surface Soil Water Content and Fractional Vegetation Cover.” Remote Sensing Reviews 9: 161–173. doi:10.1080/02757259409532220.
    • (1994) Remote Sensing Reviews , vol.9 , pp. 161-173
    • Carlson, T.N.1    Gillies, R.R.2    Perry, E.M.3
  • 9
    • 0029539231 scopus 로고
    • An Interpretation of Methodologies for Indirect Measurement of Soil Water Content
    • T.N.Carlson,, R.R.Gillies, and T.J.Schmugge. 1995. “An Interpretation of Methodologies for Indirect Measurement of Soil Water Content.” Agricultural and Forest Meteorologyy 77: 191–205. doi:10.1016/0168-1923(95)02261-U.
    • (1995) Agricultural and Forest Meteorologyy , vol.77 , pp. 191-205
    • Carlson, T.N.1    Gillies, R.R.2    Schmugge, T.J.3
  • 10
    • 0034914502 scopus 로고    scopus 로고
    • Detecting Vegetation Leaf Water Content Using Reflectance in the Optical Domain
    • P.Ceccato,, S.Flasse, S.Tarantola, S.Jacquemoud, and J.-M.Gregoire. 2001. “Detecting Vegetation Leaf Water Content Using Reflectance in the Optical Domain.” Remote Sensing of Environment 77 (1): 22–33. doi:10.1016/S0034-4257(01)00191-2.
    • (2001) Remote Sensing of Environment , vol.77 , Issue.1 , pp. 22-33
    • Ceccato, P.1    Flasse, S.2    Tarantola, S.3    Jacquemoud, S.4    Gregoire, J.-M.5
  • 11
    • 0036788881 scopus 로고    scopus 로고
    • Designing a Spectral Index to Estimate Vegetation Water Content from Remote Sensing Data: Part 1: Theoretical Approach
    • P.Ceccato,, N.Gobron, S.Flasse, B.Pinty, and S.Tarantola. 2002. “Designing a Spectral Index to Estimate Vegetation Water Content from Remote Sensing Data: Part 1: Theoretical Approach.” Remote Sensing of Environment 82 (2–3): 188–197. doi:10.1016/S0034-4257(02)00037-8.
    • (2002) Remote Sensing of Environment , vol.82 , Issue.2-3 , pp. 188-197
    • Ceccato, P.1    Gobron, N.2    Flasse, S.3    Pinty, B.4    Tarantola, S.5
  • 12
    • 84870993585 scopus 로고    scopus 로고
    • Evaluation of Drought Indices via Remotely Sensed Data with Hydrological Variables
    • M.Choi,, J.M.Jacobs, M.C.Anderson, and D.D.Bosch. 2013. “Evaluation of Drought Indices via Remotely Sensed Data with Hydrological Variables.” Journal of Hydrology 476: 265–273. doi:10.1016/j.jhydrol.2012.10.042.
    • (2013) Journal of Hydrology , vol.476 , pp. 265-273
    • Choi, M.1    Jacobs, J.M.2    Anderson, M.C.3    Bosch, D.D.4
  • 13
    • 0142123253 scopus 로고    scopus 로고
    • Derivation of a Shortwave Infrared Water Stress Index from MODIS Near- and Shortwave Infrared Data in a Semi-Arid Environment
    • R.Fensholt,, and I.Sandholt. 2003. “Derivation of a Shortwave Infrared Water Stress Index from MODIS Near- and Shortwave Infrared Data in a Semi-Arid Environment.” Remote Sensing of Environment 87 (1): 111–121. doi:10.1016/j.rse.2003.07.002.
    • (2003) Remote Sensing of Environment , vol.87 , Issue.1 , pp. 111-121
    • Fensholt, R.1    Sandholt, I.2
  • 14
    • 0030429663 scopus 로고    scopus 로고
    • NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space
    • B.-C.Gao, 1996. “NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space.” Remote Sensing of Environment 58: 257–266. doi:10.1016/S0034-4257(96)00067-3.
    • (1996) Remote Sensing of Environment , vol.58 , pp. 257-266
    • Gao, B.-C.1
  • 15
    • 34248364020 scopus 로고    scopus 로고
    • Designing of the Perpendicular Drought Index
    • A.Ghulam,, Q.Qin, and Z.Zhan. 2007. “Designing of the Perpendicular Drought Index.” Environmental Geology 52 (6): 1045–1052. doi:10.1007/s00254-006-0544-2.
    • (2007) Environmental Geology , vol.52 , Issue.6 , pp. 1045-1052
    • Ghulam, A.1    Qin, Q.2    Zhan, Z.3
  • 16
    • 0037356853 scopus 로고    scopus 로고
    • Relationships between Leaf Chlorophyll Content and Spectral Reflectance and Algorithms for Non-Destructive Chlorophyll Assessment in Higher Plant Leaves
    • A.A.Gitelson,, Y.Gritz, and M.N.Merzlyak. 2003. “Relationships between Leaf Chlorophyll Content and Spectral Reflectance and Algorithms for Non-Destructive Chlorophyll Assessment in Higher Plant Leaves.” Journal of Plant Physiology 160: 271–282. doi:10.1078/0176-1617-00887.
    • (2003) Journal of Plant Physiology , vol.160 , pp. 271-282
    • Gitelson, A.A.1    Gritz, Y.2    Merzlyak, M.N.3
  • 17
    • 34249910365 scopus 로고    scopus 로고
    • A Five-Year Analysis of MODIS NDVI and NDWI for Grassland Drought Assessment over the Central Great Plains of the United States
    • Y.Gu,, J.F.Brown, J.P.Verdin, and B.Wardlow. 2007. “A Five-Year Analysis of MODIS NDVI and NDWI for Grassland Drought Assessment over the Central Great Plains of the United States.” Geophysical Research Letters 34 (6): L06407. doi:10.1029/2006gl029127.
    • (2007) Geophysical Research Letters , vol.34 , Issue.6 , pp. 6407
    • Gu, Y.1    Brown, J.F.2    Verdin, J.P.3    Wardlow, B.4
  • 18
    • 60149083938 scopus 로고    scopus 로고
    • Evaluation of MODIS NDVI and NDWI for Vegetation Drought Monitoring Using Oklahoma Mesonet Soil Moisture Data
    • Y.Gu,, E.Hunt, B.Wardlow, J.B.Basara, J.F.Brown, and J.P.Verdin. 2008. “Evaluation of MODIS NDVI and NDWI for Vegetation Drought Monitoring Using Oklahoma Mesonet Soil Moisture Data.” Geophysical Research Letters 35: L22401. doi:10.1029/2008GL035772.
    • (2008) Geophysical Research Letters , vol.35 , pp. 401
    • Gu, Y.1    Hunt, E.2    Wardlow, B.3    Basara, J.B.4    Brown, J.F.5    Verdin, J.P.6
  • 19
    • 0021091121 scopus 로고
    • The Influences of Soil Salinity, Growth Form, and Leaf Moisture on the Spectral Reflectance of Spartinaalterniflora Canopies
    • M.A.Hardisky,, V.Klemas, and R.M.Smart. 1983. “The Influences of Soil Salinity, Growth Form, and Leaf Moisture on the Spectral Reflectance of Spartinaalterniflora Canopies.” Photogrammetric Engineering & Remote Sensing 49: 77–83.
    • (1983) Photogrammetric Engineering & Remote Sensing , vol.49 , pp. 77-83
    • Hardisky, M.A.1    Klemas, V.2    Smart, R.M.3
  • 20
    • 0022899707 scopus 로고
    • Change in the Corn Belt
    • J.F.Hart, 1986. “Change in the Corn Belt.” Geographical Review 76: 51–72. doi:10.2307/214784.
    • (1986) Geographical Review , vol.76 , pp. 51-72
    • Hart, J.F.1
  • 21
    • 0036700088 scopus 로고    scopus 로고
    • A Review of Twentieth-Century Drought Index Used in the United States
    • R.R.Heim, 2002. “A Review of Twentieth-Century Drought Index Used in the United States.” Bulletin of the American Meteorological Society 83: 1149–1165. doi:10.1175/1520-0477(2002)083<1149:AROTDI>2.3.CO;2.
    • (2002) Bulletin of the American Meteorological Society , vol.83 , pp. 1149-1165
    • Heim, R.R.1
  • 22
    • 0024856777 scopus 로고
    • Detection of Changes in Leaf Water Content Using near and Middle-Infrared Reflectances
    • E.R.Hunt,, and B.N.Rock. 1989. “Detection of Changes in Leaf Water Content Using near and Middle-Infrared Reflectances.” Remote Sensing of Environment 49: 43–54.
    • (1989) Remote Sensing of Environment , vol.49 , pp. 43-54
    • Hunt, E.R.1    Rock, B.N.2
  • 23
    • 0142027915 scopus 로고    scopus 로고
    • Assessing Vegetation Response to Drought in the Northern Great Plains Using Vegetation and Drought Indices
    • L.Ji,, and A.J.Peters. 2003. “Assessing Vegetation Response to Drought in the Northern Great Plains Using Vegetation and Drought Indices.” Remote Sensing of Environment 87: 85–98. doi:10.1016/S0034-4257(03)00174-3.
    • (2003) Remote Sensing of Environment , vol.87 , pp. 85-98
    • Ji, L.1    Peters, A.J.2
  • 25
    • 84944075286 scopus 로고    scopus 로고
    • Brutal Drought Depresses Agriculture Thwarting U.S. and Texas Economies
    • Dallas, TX: Federal Reserve Bank of Dallas
    • E.Kerr, 2012. “Brutal Drought Depresses Agriculture Thwarting U.S. and Texas Economies.” In Southwest Economy, edited by M. Weiss, 10–13. Dallas, TX: Federal Reserve Bank of Dallas.
    • (2012) Southwest Economy , pp. 10-13
    • Kerr, E.1
  • 26
    • 84947206248 scopus 로고    scopus 로고
    • FEMA – Dealing with the Drought
    • A.Kimery, 2012. “FEMA – Dealing with the Drought.” Homeland Security Today. Accessed 8 August 2013. http://www.hstoday.us/channels/fema/single-article-page/dealing-with-the-drought.html
    • (2012) Homeland Security Today
    • Kimery, A.1
  • 28
    • 0028833901 scopus 로고
    • Application of Vegetation Index and Brightness Temperature for Drought Detection
    • F.N.Kogan, 1995a. “Application of Vegetation Index and Brightness Temperature for Drought Detection.” Advances in Space Research 15: 91–100. doi:10.1016/0273-1177(95)00079-T.
    • (1995) Advances in Space Research , vol.15 , pp. 91-100
    • Kogan, F.N.1
  • 29
    • 0029500220 scopus 로고
    • Droughts of the Late 1980s in the United States as Derived from NOAA Polar-Orbiting Satellite Data
    • F.N.Kogan, 1995b. “Droughts of the Late 1980s in the United States as Derived from NOAA Polar-Orbiting Satellite Data.” Bulletin of the American Meteorological Society 76: 655–668. doi:10.1175/1520-0477(1995)076<0655:DOTLIT>2.0.CO;2.
    • (1995) Bulletin of the American Meteorological Society , vol.76 , pp. 655-668
    • Kogan, F.N.1
  • 30
    • 0031449592 scopus 로고    scopus 로고
    • Global Drought Watch from Space
    • F.N.Kogan, 1997. “Global Drought Watch from Space.” Bulletin of the American Meteorological Society 78 (4): 621–636. doi:10.1175/1520-0477(1997)078<0621:GDWFS>2.0.CO;2.
    • (1997) Bulletin of the American Meteorological Society , vol.78 , Issue.4 , pp. 621-636
    • Kogan, F.N.1
  • 31
    • 85048609692 scopus 로고    scopus 로고
    • Agricultural Drought Monitoring in Kenya Using Evapotranspiration Derived from Remote Sensing and Reanalysis Data
    • Wardlow B.D., Anderson M.C., Verdin J.P., (eds), Boca Raton, FL: CRC Press
    • M.T.Marshall,, C.Funk, and J.Michaelsen. 2012. “Agricultural Drought Monitoring in Kenya Using Evapotranspiration Derived from Remote Sensing and Reanalysis Data.” In Remote Sensing of Drought: Innovative Monitoring Approaches, edited by B.D.Wardlow, M.C.Anderson, and J.P.Verdin, 169–196. Boca Raton, FL: CRC Press.
    • (2012) Remote Sensing of Drought: Innovative Monitoring Approaches , pp. 169-196
    • Marshall, M.T.1    Funk, C.2    Michaelsen, J.3
  • 33
    • 0028668154 scopus 로고
    • Estimating Crop Water Deficit Using the Relation between Surface-Air Temperature and Spectral Vegetation Index
    • M.S.Moran,, T.R.Clarke, Y.Inoue, and A.Vidal. 1994. “Estimating Crop Water Deficit Using the Relation between Surface-Air Temperature and Spectral Vegetation Index.” Remote Sensing of Environment 49 (3): 246–263. doi:10.1016/0034-4257(94)90020-5.
    • (1994) Remote Sensing of Environment , vol.49 , Issue.3 , pp. 246-263
    • Moran, M.S.1    Clarke, T.R.2    Inoue, Y.3    Vidal, A.4
  • 34
    • 70349428682 scopus 로고    scopus 로고
    • On the Use of Standardized Precipitation Index (SPI) for Drought Intensity Assessment
    • M.Naresh Kumar,, C.S.Murthy, M.V.R.Sesha Sai, and P.S.Roy. 2009. “On the Use of Standardized Precipitation Index (SPI) for Drought Intensity Assessment.” Meteorological Applications 16 (3): 381–389. doi:10.1002/met.136.
    • (2009) Meteorological Applications , vol.16 , Issue.3 , pp. 381-389
    • Naresh Kumar, M.1    Murthy, C.S.2    Sesha Sai, M.V.R.3    Roy, P.S.4
  • 36
    • 48349112954 scopus 로고    scopus 로고
    • A New Methodology to Map Irrigated Areas Using Multi-Temporal MODIS and Ancillary Data: An Application Example in the Continental US
    • M.Ozdogan,, and G.Gutman. 2008. “A New Methodology to Map Irrigated Areas Using Multi-Temporal MODIS and Ancillary Data: An Application Example in the Continental US.” Remote Sensing of Environment 112 (9): 3520–3537. doi:10.1016/j.rse.2008.04.010.
    • (2008) Remote Sensing of Environment , vol.112 , Issue.9 , pp. 3520-3537
    • Ozdogan, M.1    Gutman, G.2
  • 38
    • 84871711985 scopus 로고    scopus 로고
    • Analysis of Agricultural Drought Using Vegetation Temperature Condition Index (VTCI) from Terra/Modis Satellite Data
    • N.R.Patel,, B.R.Parida, V.Venus, S.K.Saha, and V.K.Dadhwal. 2012. “Analysis of Agricultural Drought Using Vegetation Temperature Condition Index (VTCI) from Terra/Modis Satellite Data.” Environmental Monitoring and Assessment 184 (12): 7153–7163. doi:10.1007/s10661-011-2487-7.
    • (2012) Environmental Monitoring and Assessment , vol.184 , Issue.12 , pp. 7153-7163
    • Patel, N.R.1    Parida, B.R.2    Venus, V.3    Saha, S.K.4    Dadhwal, V.K.5
  • 39
    • 0025661557 scopus 로고
    • High Temporal Frequency Remote Sensing of Primary Production Using NOAA AVHRR
    • S.D.Prince, 1990. “High Temporal Frequency Remote Sensing of Primary Production Using NOAA AVHRR.” Applications of Remote Sensing in Agruculture 4: 169–183.
    • (1990) Applications of Remote Sensing in Agruculture , vol.4 , pp. 169-183
    • Prince, S.D.1
  • 40
    • 41549150356 scopus 로고    scopus 로고
    • Evaluation of MODIS Derived Perpendicular Drought Index for Estimation of Surface Dryness over Northwestern China
    • Q.Qin,, A.Ghulam, L.Zhu, L.Wang, J.Li, and P.Nan. 2008. “Evaluation of MODIS Derived Perpendicular Drought Index for Estimation of Surface Dryness over Northwestern China.” International Journal of Remote Sensing 29: 1983–1995. doi:10.1080/01431160701355264.
    • (2008) International Journal of Remote Sensing , vol.29 , pp. 1983-1995
    • Qin, Q.1    Ghulam, A.2    Zhu, L.3    Wang, L.4    Li, J.5    Nan, P.6
  • 41
    • 0345581722 scopus 로고    scopus 로고
    • An Evaluation of Agricultural Drought Indices for the Canadian Prairies
    • S.M.Quiring,, and T.N.Papakryiakou. 2003. “An Evaluation of Agricultural Drought Indices for the Canadian Prairies.” Agricultural and Forest Meteorology 118 (1–2): 49–62. doi:10.1016/s0168-1923(03)00072-8.
    • (2003) Agricultural and Forest Meteorology , vol.118 , Issue.1-2 , pp. 49-62
    • Quiring, S.M.1    Papakryiakou, T.N.2
  • 42
    • 77956873550 scopus 로고    scopus 로고
    • Monitoring Agricultural Drought for Arid and Humid Regions Using Multi-Sensor Remote Sensing Data
    • J.Rhee,, J.Im, and G.J.Carbone. 2010. “Monitoring Agricultural Drought for Arid and Humid Regions Using Multi-Sensor Remote Sensing Data.” Remote Sensing of Environment 114 (12): 2875–2887. doi:10.1016/j.rse.2010.07.005.
    • (2010) Remote Sensing of Environment , vol.114 , Issue.12 , pp. 2875-2887
    • Rhee, J.1    Im, J.2    Carbone, G.J.3
  • 43
    • 78650922411 scopus 로고    scopus 로고
    • Assessing Drought Probability for Agricultural Areas in Africa with Coarse Resolution Remote Sensing Imagery
    • O.Rojas,, A.Vrieling, and F.Rembold. 2011. “Assessing Drought Probability for Agricultural Areas in Africa with Coarse Resolution Remote Sensing Imagery.” Remote Sensing of Environment 115 (2): 343–352. doi:10.1016/j.rse.2010.09.006.
    • (2011) Remote Sensing of Environment , vol.115 , Issue.2 , pp. 343-352
    • Rojas, O.1    Vrieling, A.2    Rembold, F.3
  • 44
    • 85055810940 scopus 로고    scopus 로고
    • Drought Monitoring Using Fraction of Absorbed Photosynthetically Active Radiation Estimates Derived from MERIS
    • Wardlow B., Andersen M.C., Verdin J.P., (eds), Boca Raton, FL: CRC press
    • S.Rossi,, and S.Niemeyer. 2012. “Drought Monitoring Using Fraction of Absorbed Photosynthetically Active Radiation Estimates Derived from MERIS.” In Remote sensing of Drought Innovative Monitoring Approaches, edited by B.Wardlow, M.C.Andersen, and J.P.Verdin, 95–120. Boca Raton, FL: CRC press.
    • (2012) Remote sensing of Drought Innovative Monitoring Approaches , pp. 95-120
    • Rossi, S.1    Niemeyer, S.2
  • 46
    • 0036148893 scopus 로고    scopus 로고
    • A Simple Interpretation of the Surface Temperature/Vegetation Index Space for Assessment of Surface Moisture Status
    • I.Sandholt,, K.Rasmussen, and J.Andersen. 2002. “A Simple Interpretation of the Surface Temperature/Vegetation Index Space for Assessment of Surface Moisture Status.” Remote Sensing of Environment 79: 213–224. doi:10.1016/S0034-4257(01)00274-7.
    • (2002) Remote Sensing of Environment , vol.79 , pp. 213-224
    • Sandholt, I.1    Rasmussen, K.2    Andersen, J.3
  • 47
    • 0031798417 scopus 로고    scopus 로고
    • Avhrr-Based Vegetation and Temperature Condition Indices for Drought Detection in Argentina
    • R.A.Seiler,, F.Kogan, and J.Sullivan. 1998. “Avhrr-Based Vegetation and Temperature Condition Indices for Drought Detection in Argentina.” Advances in Space Research 21: 481–484. doi:10.1016/S0273-1177(97)00884-3.
    • (1998) Advances in Space Research , vol.21 , pp. 481-484
    • Seiler, R.A.1    Kogan, F.2    Sullivan, J.3
  • 49
    • 79952364179 scopus 로고    scopus 로고
    • Using the Vegetation Temperature Condition Index for Time Series Drought Occurrence Monitoring in the Guanzhong Plain, PR China
    • W.Sun,, P.-X.Wang, S.-Y.Zhang, D.-H.Zhu, J.-M.Liu, J.-H.Chen, and H.-S.Yang. 2008. “Using the Vegetation Temperature Condition Index for Time Series Drought Occurrence Monitoring in the Guanzhong Plain, PR China.” International Journal of Remote Sensing 29 (17–18): 5133–5144. doi:10.1080/01431160802036557.
    • (2008) International Journal of Remote Sensing , vol.29 , Issue.17-18 , pp. 5133-5144
    • Sun, W.1    Wang, P.-X.2    Zhang, S.-Y.3    Zhu, D.-H.4    Liu, J.-M.5    Chen, J.-H.6    Yang, H.-S.7
  • 51
    • 80052682768 scopus 로고    scopus 로고
    • Assessment of Vegetation Response to Drought in Nebraska Using Terra-MODIS Land Surface Temperature and Normalized Difference Vegetation Index
    • S.Swain,, B.D.Wardlow, S.Narumalani, T.Tadesse, and K.Callahan. 2011. “Assessment of Vegetation Response to Drought in Nebraska Using Terra-MODIS Land Surface Temperature and Normalized Difference Vegetation Index.” GIScience & Remote Sensing 48 (3): 432–455. doi:10.2747/1548-1603.48.3.432.
    • (2011) GIScience & Remote Sensing , vol.48 , Issue.3 , pp. 432-455
    • Swain, S.1    Wardlow, B.D.2    Narumalani, S.3    Tadesse, T.4    Callahan, K.5
  • 53
    • 0036846973 scopus 로고    scopus 로고
    • Towards Operational Monitoring of Terrestrial Systems by Moderate-Resolution Remote Sensing
    • J.R.G.Townshend,, and C.Justice. 2002. “Towards Operational Monitoring of Terrestrial Systems by Moderate-Resolution Remote Sensing.” Remote Sensing of Environment 83: 351–359. doi:10.1016/S0034-4257(02)00082-2.
    • (2002) Remote Sensing of Environment , vol.83 , pp. 351-359
    • Townshend, J.R.G.1    Justice, C.2
  • 54
    • 0018465733 scopus 로고
    • Red and Photographic Infrared Linear Combinations for Monitoring Vegetation
    • C.J.Tucker, 1979. “Red and Photographic Infrared Linear Combinations for Monitoring Vegetation.” Remote Sensing of Environment 8: 127–150. doi:10.1016/0034-4257(79)90013-0.
    • (1979) Remote Sensing of Environment , vol.8 , pp. 127-150
    • Tucker, C.J.1
  • 55
    • 0032010538 scopus 로고    scopus 로고
    • Drought Monitoring and Corn Yield Estimation in Southern Africa from AVHRR Data
    • L.S.Unganai,, and F.N.Kogan. 1998. “Drought Monitoring and Corn Yield Estimation in Southern Africa from AVHRR Data.” Remote Sensing of Environment 63: 219–232. doi:10.1016/S0034-4257(97)00132-6.
    • (1998) Remote Sensing of Environment , vol.63 , pp. 219-232
    • Unganai, L.S.1    Kogan, F.N.2
  • 56
    • 84884505399 scopus 로고    scopus 로고
    • Washington, DC: U.S. Department of Agriculture, National Agricultural Statistics Service
    • USDA. 2013. Crop Production 2012 Summary. Washington, DC: U.S. Department of Agriculture, National Agricultural Statistics Service.
    • (2013) Crop Production 2012 Summary
  • 57
    • 1142306100 scopus 로고    scopus 로고
    • Using MODIS Land Surface Temperature and Normalized Difference Vegetation Index Products for Monitoring Drought in the Southern Great Plains, USA
    • Z.Wan,, P.Wang, and X.Li. 2004. “Using MODIS Land Surface Temperature and Normalized Difference Vegetation Index Products for Monitoring Drought in the Southern Great Plains, USA.” International Journal of Remote Sensing 25 (1): 61–72. doi:10.1080/0143116031000115328.
    • (2004) International Journal of Remote Sensing , vol.25 , Issue.1 , pp. 61-72
    • Wan, Z.1    Wang, P.2    Li, X.3
  • 58
    • 37349101941 scopus 로고    scopus 로고
    • NMDI: A Normalized Multi-Band Drought Index for Monitoring Soil and Vegetation Moisture with Satellite Remote Sensing
    • L.Wang,, and J.J.Qu. 2007. “NMDI: A Normalized Multi-Band Drought Index for Monitoring Soil and Vegetation Moisture with Satellite Remote Sensing.” Geophysical Research Letters 34: 20. doi:10.1029/2007GL031021.
    • (2007) Geophysical Research Letters , vol.34 , pp. 20
    • Wang, L.1    Qu, J.J.2
  • 60
    • 84977792543 scopus 로고    scopus 로고
    • Drought Monitoring as a Component of Drought Preparedness Planning
    • Iglesias A., Cancelliere A., Wilhite D.A., Garrote L., Cubillo F., (eds), Springer Science and Business Media B.V
    • D.A.Whilhite, 2009. “Drought Monitoring as a Component of Drought Preparedness Planning.” In Coping with Drought Risk in Agriculture and Water Supply Systems, edited by A.Iglesias, A.Cancelliere, D.A.Wilhite, L.Garrote, and F.Cubillo, 3–19, Springer Science and Business Media B.V.
    • (2009) Coping with Drought Risk in Agriculture and Water Supply Systems , pp. 3-19
    • Whilhite, D.A.1
  • 61
    • 0036164951 scopus 로고    scopus 로고
    • Assessing Vulnerability to Agricultural Drought: A Nebraska Case
    • O.V.Wilhelmi,, and D.A.Wilhite. 2002. “Assessing Vulnerability to Agricultural Drought: A Nebraska Case.” Natural Hazards 25: 37–58. doi:10.1023/A:1013388814894.
    • (2002) Natural Hazards , vol.25 , pp. 37-58
    • Wilhelmi, O.V.1    Wilhite, D.A.2
  • 63
    • 34247641725 scopus 로고    scopus 로고
    • Understanding the Complex Impacts of Drought: A Key to Enhancing Drought Mitigation and Preparedness
    • D.A.Wilhite,, M.D.Svoboda, and M.J.Hayes. 2007. “Understanding the Complex Impacts of Drought: A Key to Enhancing Drought Mitigation and Preparedness.” Water Resources Management 21: 763–774. doi:10.1007/s11269-006-9076-5.
    • (2007) Water Resources Management , vol.21 , pp. 763-774
    • Wilhite, D.A.1    Svoboda, M.D.2    Hayes, M.J.3
  • 64
    • 41249103476 scopus 로고    scopus 로고
    • Remote Sensing of Vegetation Water Content from Equivalent Water Thickness Using Satellite Imagery
    • M.T.Yilmaz,, E.R.Hunt, and T.J.Jackson. 2008. “Remote Sensing of Vegetation Water Content from Equivalent Water Thickness Using Satellite Imagery.” Remote Sensing of Environment 112: 2514–2522. doi:10.1016/j.rse.2007.11.014.
    • (2008) Remote Sensing of Environment , vol.112 , pp. 2514-2522
    • Yilmaz, M.T.1    Hunt, E.R.2    Jackson, T.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.