-
1
-
-
38949102073
-
Building better batteries
-
Armand, M. & Tarascon, J. Building better batteries. Nature 451, 652-657 (2008).
-
(2008)
Nature
, vol.451
, pp. 652-657
-
-
Armand, M.1
Tarascon, J.2
-
2
-
-
57049106377
-
Car industry: Charging up future
-
Tollefson, J. Car industry: charging up future. Nature 456, 436-440 (2008).
-
(2008)
Nature
, vol.456
, pp. 436-440
-
-
Tollefson, J.1
-
3
-
-
78049528300
-
4/graphene hybrid anode for lithium rechargeable batteries
-
4/graphene hybrid anode for lithium rechargeable batteries. Carbon 49, 326-332 (2011).
-
(2011)
Carbon
, vol.49
, pp. 326-332
-
-
Kim, H.1
Seo, D.2
Kim, S.3
Kim, J.4
Kang, K.5
-
4
-
-
79961005781
-
Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries
-
Ji, L., Lin, Z., Alcoutlabi, M. & Zhang, X. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 4, 2682 (2011).
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 2682
-
-
Ji, L.1
Lin, Z.2
Alcoutlabi, M.3
Zhang, X.4
-
6
-
-
84880276450
-
Homogeneous CoO on Graphene for Binder-Free and Ultralong-Life Lithium Ion Batteries
-
Huang, X. et al. Homogeneous CoO on Graphene for Binder-Free and Ultralong-Life Lithium Ion Batteries. Adv. Funct. Mater. 23, 4345-4353 (2013).
-
(2013)
Adv. Funct. Mater
, vol.23
, pp. 4345-4353
-
-
Huang, X.1
-
7
-
-
84863011248
-
Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage
-
Huang, Y. et al. Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage. J. Mater. Chem. 22, 2844-2847 (2012).
-
(2012)
J. Mater. Chem.
, vol.22
, pp. 2844-2847
-
-
Huang, Y.1
-
8
-
-
79959990745
-
4 nanoparticles confined in mesocellular carbon foam for high performance anode materials for lithium-ion batteries
-
4 nanoparticles confined in mesocellular carbon foam for high performance anode materials for lithium-ion batteries. Adv. Funct. Mater. 21, 2430-2438 (2011).
-
(2011)
Adv. Funct. Mater
, vol.21
, pp. 2430-2438
-
-
Kang, E.1
-
9
-
-
84898877648
-
Copper oxide nanowire arrays synthesized by in-situ thermal oxidation as an anode material for lithium-ion batteries
-
Li, A., Song, H., Wan, W., Zhou, J. & Chen, X. Copper oxide nanowire arrays synthesized by in-situ thermal oxidation as an anode material for lithium-ion batteries. Electrochim. Acta 132, 42-48 (2014).
-
(2014)
Electrochim. Acta
, vol.132
, pp. 42-48
-
-
Li, A.1
Song, H.2
Wan, W.3
Zhou, J.4
Chen, X.5
-
11
-
-
84896987014
-
Flexible CoO-graphene-carbon nanofiber mats as binder-free anodes for lithium-ion batteries with superior rate capacity and cyclic stability
-
Zhang, M. et al. Flexible CoO-graphene-carbon nanofiber mats as binder-free anodes for lithium-ion batteries with superior rate capacity and cyclic stability. J. Mater. Chem. A 2, 5890 (2014).
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 5890
-
-
Zhang, M.1
-
12
-
-
84900794327
-
Multifunctional CoO@C metasequoia arrays for enhanced lithium storage
-
Liu, J. et al. Multifunctional CoO@C metasequoia arrays for enhanced lithium storage. Nano Energy 7, 52-62 (2014).
-
(2014)
Nano Energy
, vol.7
, pp. 52-62
-
-
Liu, J.1
-
13
-
-
84885345225
-
Integrated solid/nanoporous copper/oxide hybrid bulk electrodes for high-performance lithium-ion batteries
-
Hou, C. et al. Integrated solid/nanoporous copper/oxide hybrid bulk electrodes for high-performance lithium-ion batteries. Sci. Rep. 3, 2878 (2013).
-
(2013)
Sci. Rep.
, vol.3
, pp. 2878
-
-
Hou, C.1
-
14
-
-
0034727086
-
Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries
-
Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496-499 (2000).
-
(2000)
Nature
, vol.407
, pp. 496-499
-
-
Poizot, P.1
Laruelle, S.2
Grugeon, S.3
Dupont, L.4
Tarascon, J.5
-
15
-
-
84901405212
-
A solvothermal strategy: One-step in situ synthesis of self-assembled 3D graphene-based composites with enhanced lithium storage capacity
-
Ma, J. et al. A solvothermal strategy: one-step in situ synthesis of self-assembled 3D graphene-based composites with enhanced lithium storage capacity. J. Mater. Chem. A 2, 9200 (2014).
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 9200
-
-
Ma, J.1
-
17
-
-
0034727086
-
Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries
-
Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496-499 (2000).
-
(2000)
Nature
, vol.407
, pp. 496-499
-
-
Poizot, P.1
Laruelle, S.2
Grugeon, S.3
Dupont, L.4
Tarascon, J.5
-
18
-
-
33750497467
-
Nanomaterials for lithium ion batteries
-
Jiang, C., Hosono, E. & Zhou, H. Nanomaterials for lithium ion batteries. Nano Today 1, 28-33 (2006).
-
(2006)
Nano Today
, vol.1
, pp. 28-33
-
-
Jiang, C.1
Hosono, E.2
Zhou, H.3
-
19
-
-
77954944911
-
4 materials: Synthesis, characterization, and electrochemical behaviors as anode reactants in rechargeable lithium ion batteries
-
4 materials: synthesis, characterization, and electrochemical behaviors as anode reactants in rechargeable lithium ion batteries. J. Phys. Chem. C 114, 12805-12817 (2010).
-
(2010)
J. Phys. Chem. C
, vol.114
, pp. 12805-12817
-
-
Guo, B.1
Li, C.2
Yuan, Z.3
-
20
-
-
38749085606
-
4 nanowire arrays for lithium ion batteries with high capacity and rate capability
-
4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano lett. 8, 265-270 (2008).
-
(2008)
Nano Lett.
, vol.8
, pp. 265-270
-
-
Li, Y.1
Tan, B.2
Wu, Y.3
-
21
-
-
84882568641
-
4 with superior lithium storage properties
-
4 with superior lithium storage properties. J. Mater. Chem. A 1, 10935 (2013).
-
(2013)
J. Mater. Chem. A
, vol.1
-
-
Li, L.1
-
22
-
-
84874861217
-
Mesoporous NiO nanosheet networks as high performance anodes for Li ion batteries
-
Wang, X. et al. Mesoporous NiO nanosheet networks as high performance anodes for Li ion batteries. J. Mater. Chem. A 1, 4173 (2013).
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 4173
-
-
Wang, X.1
-
23
-
-
84892725938
-
4 mesoporous nanostructures@graphene membrane as an integrated anode for long-life lithium-ion batteries
-
4 mesoporous nanostructures@graphene membrane as an integrated anode for long-life lithium-ion batteries. J. Power Sources 255, 52-58 (2014).
-
(2014)
J. Power Sources
, vol.255
, pp. 52-58
-
-
Li, L.1
-
25
-
-
84873643132
-
4 nanoparticles deposited on porous graphene surfaces for high performance of lithium ion batteries
-
4 nanoparticles deposited on porous graphene surfaces for high performance of lithium ion batteries. Nanoscale 4, 5924-5930 (2012).
-
(2012)
Nanoscale
, vol.4
, pp. 5924-5930
-
-
Choi, B.1
-
26
-
-
84901677290
-
4 nanocomposites as anode materials for lithium-ion batteries
-
4 nanocomposites as anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 6, 7117-7125 (2014).
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 7117-7125
-
-
Wang, L.1
-
27
-
-
33646577838
-
Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes
-
Nam, K. et al. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312, 885-888 (2006).
-
(2006)
Science
, vol.312
, pp. 885-888
-
-
Nam, K.1
-
29
-
-
78650087337
-
4@carbon nanocomposites
-
4@carbon nanocomposites. Acs Nano 4, 4753-4761 (2010).
-
(2010)
Acs Nano
, vol.4
, pp. 4753-4761
-
-
Wang, Y.1
-
30
-
-
84884270236
-
4/carbon aerogel hybrids as anode materials for lithium-ion batteries with enhanced electrochemical properties
-
4/carbon aerogel hybrids as anode materials for lithium-ion batteries with enhanced electrochemical properties. ACS Appl. Mater. Interfaces 5, 8337-8344 (2013).
-
(2013)
ACS Appl. Mater. Interfaces
, vol.5
, pp. 8337-8344
-
-
Hao, F.1
Zhang, Z.2
Yin, L.3
-
31
-
-
77955875714
-
4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance
-
4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4, 3187-3194 (2010).
-
(2010)
ACS Nano
, vol.4
, pp. 3187-3194
-
-
Wu, Z.1
-
32
-
-
84875699365
-
4-carbon nanotube composite and its superior performance as an anode material for Li-ion batteries
-
4-carbon nanotube composite and its superior performance as an anode material for Li-ion batteries. J. Mater. Chem. A 1, 1141 (2013).
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 1141
-
-
Zhuo, L.1
-
33
-
-
84893856154
-
Graphene-wrapped mesoporous cobalt oxide hollow spheres anode for high-rate and long-life lithium ion batteries
-
Sun, H. et al. Graphene-wrapped mesoporous cobalt oxide hollow spheres anode for high-rate and long-life lithium ion batteries. J. Phys. Chem. C 118, 2263-2272 (2014).
-
(2014)
J. Phys. Chem. C
, vol.118
, pp. 2263-2272
-
-
Sun, H.1
-
34
-
-
85027935392
-
4@carbon nanotube arrays for high-performance lithium-ion batteries
-
4@carbon nanotube arrays for high-performance lithium-ion batteries. Angew. Chem. Int. Ed. 54, 7060-7064 (2015).
-
(2015)
Angew. Chem. Int. Ed
, vol.54
, pp. 7060-7064
-
-
Gu, D.1
-
35
-
-
84927152245
-
4 nanoparticles encapsulated in a thin carbon nanosheet array for high and reversible lithium storage
-
4 nanoparticles encapsulated in a thin carbon nanosheet array for high and reversible lithium storage. J. Mater. Chem. A 3, 8825-8831 (2015).
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 8825-8831
-
-
Peng, L.1
Feng, Y.2
Bai, Y.3
Qiu, H.4
Wang, Y.5
-
37
-
-
84894624659
-
Graphene networks anchored with Sn@graphene as lithium ion battery anode
-
Qin, J. et al. Graphene networks anchored with Sn@graphene as lithium ion battery anode. ACS Nano 8, 1728-1738 (2014).
-
(2014)
ACS Nano
, vol.8
, pp. 1728-1738
-
-
Qin, J.1
-
38
-
-
84886722278
-
Evidence that crystal nucleation in aqueous NaCl solution occurs by the two-step mechanism
-
Chakraborty, D. & Patey, G. Evidence that crystal nucleation in aqueous NaCl solution occurs by the two-step mechanism. Chem. Phys. Lett. 587, 25-29 (2013).
-
(2013)
Chem. Phys. Lett.
, vol.587
, pp. 25-29
-
-
Chakraborty, D.1
Patey, G.2
-
39
-
-
84874144257
-
How crystals nucleate and grow in aqueous NaCl solution
-
Chakraborty, D. & Patey, G. How crystals nucleate and grow in aqueous NaCl solution. J. Phys. Chem. Lett. 4, 573-578 (2013).
-
(2013)
J. Phys. Chem. Lett.
, vol.4
, pp. 573-578
-
-
Chakraborty, D.1
Patey, G.2
-
40
-
-
0037473034
-
Thermal decomposition of metal nitrates in air and hydrogen environments
-
Yuvaraj, S., Lin, F., Chang, T. & Yeh, C. Thermal decomposition of metal nitrates in air and hydrogen environments. J. Phys. Chem. B 107, 1044-1047 (2003).
-
(2003)
J. Phys. Chem. B
, vol.107
, pp. 1044-1047
-
-
Yuvaraj, S.1
Lin, F.2
Chang, T.3
Yeh, C.4
-
41
-
-
38049074798
-
3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage
-
Wang, D., Li, F., Liu, M., Lu, G. & Cheng, H. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem. Int. Ed. 47, 373-376 (2008).
-
(2008)
Angew. Chem. Int. Ed
, vol.47
, pp. 373-376
-
-
Wang, D.1
Li, F.2
Liu, M.3
Lu, G.4
Cheng, H.5
-
42
-
-
79955563419
-
Dual-template synthesis of magnetically-separable hierarchically-ordered porous carbons by catalytic graphitization
-
Huang, C., Doong, R., Gu, D. & Zhao, D. Dual-template synthesis of magnetically-separable hierarchically-ordered porous carbons by catalytic graphitization. Carbon 49, 3055-3064 (2011).
-
(2011)
Carbon
, vol.49
, pp. 3055-3064
-
-
Huang, C.1
Doong, R.2
Gu, D.3
Zhao, D.4
-
43
-
-
84927942233
-
4 nanoparticles embedded in porous graphitic carbon nanosheets for microwave absorber
-
4 nanoparticles embedded in porous graphitic carbon nanosheets for microwave absorber. Carbon 89, 372-377 (2015).
-
(2015)
Carbon
, vol.89
, pp. 372-377
-
-
Wen, F.1
-
44
-
-
79960726856
-
An in situ method of creating metal oxide-carbon composites and their application as anode materials for lithium-ion batteries
-
Yang, Z., Shen, J. & Archer, L. An in situ method of creating metal oxide-carbon composites and their application as anode materials for lithium-ion batteries. J. Mater. Chem. 21, 11092 (2011).
-
(2011)
J. Mater. Chem.
, vol.21
-
-
Yang, Z.1
Shen, J.2
Archer, L.3
-
45
-
-
84923246507
-
4 nanoparticles as a synergistic catalyst for oxygen reduction reaction in acidic media
-
4 nanoparticles as a synergistic catalyst for oxygen reduction reaction in acidic media. Int. J. Hydrogen Energ. 40, 3875-3882 (2015).
-
(2015)
Int. J. Hydrogen Energ
, vol.40
, pp. 3875-3882
-
-
Wang, K.1
-
46
-
-
57849138505
-
4 nanospindles as a superior anode material for lithium-ion batteries
-
4 nanospindles as a superior anode material for lithium-ion batteries. Adv. Funct. Mater. 18, 3941-3946 (2008).
-
(2008)
Adv. Funct. Mater
, vol.18
, pp. 3941-3946
-
-
Zhang, W.1
Wu, X.2
Hu, J.3
Guo, Y.4
Wan, L.5
-
47
-
-
79956111260
-
4@carbon nanorods for application in lithium ion batteries
-
4@carbon nanorods for application in lithium ion batteries. J. Phys. Chem. C 115, 9814-9820 (2011).
-
(2011)
J. Phys. Chem. C
, vol.115
, pp. 9814-9820
-
-
Zhu, T.1
Chen, J.2
Lou, X.3
-
48
-
-
84863338265
-
Reduced graphene oxide-mediated growth of uniform tin-core/carbon-sheath coaxial nanocables with enhanced lithium ion storage properties
-
Luo, B. et al. Reduced graphene oxide-mediated growth of uniform tin-core/carbon-sheath coaxial nanocables with enhanced lithium ion storage properties. Adv. Mater. 24, 1405-1409 (2012).
-
(2012)
Adv. Mater
, vol.24
, pp. 1405-1409
-
-
Luo, B.1
-
49
-
-
84874432208
-
Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery snodes
-
Wang, B. et al. Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery snodes. ACS Nano 7, 1437-1445 (2013).
-
(2013)
ACS Nano
, vol.7
, pp. 1437-1445
-
-
Wang, B.1
-
51
-
-
84897649182
-
4 nanoplates for lithium-ion batteries
-
4 nanoplates for lithium-ion batteries. J. Mater. Chem. A 2, 4449 (2014).
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 4449
-
-
Chen, Y.1
-
52
-
-
84870457666
-
Building robust architectures of carbon and metal oxide nanocrystals toward high-performance anodes for lithium-ion batteries
-
Jia, X. et al. Building robust architectures of carbon and metal oxide nanocrystals toward high-performance anodes for lithium-ion batteries. ACS Nano 6, 9911-9919 (2012).
-
(2012)
ACS Nano
, vol.6
, pp. 9911-9919
-
-
Jia, X.1
-
53
-
-
84890836188
-
4 nanoplates as anode materials for lithium-ion batteries
-
4 nanoplates as anode materials for lithium-ion batteries. J. Power Sources 251, 351-356 (2014).
-
(2014)
J. Power Sources
, vol.251
, pp. 351-356
-
-
Liang, C.1
-
54
-
-
84878933856
-
4 hollow microspheres as high-performance anode materials in lithium-ion batteries
-
4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem., Int. Ed. 52, 6417-6420 (2013).
-
(2013)
Angew. Chem., Int. Ed
, vol.52
, pp. 6417-6420
-
-
Wang, J.1
-
55
-
-
78149422502
-
Fabrication of graphene-encapsulated oxide nanoparticles: Towards high-performance anode materials for lithium storage
-
Yang, S., Feng, X., Ivanovici, S. & Mullen, K. Fabrication of graphene-encapsulated oxide nanoparticles: towards high-performance anode materials for lithium storage. Angew. Chem., Int. Ed. 49, 8408-8411 (2010).
-
(2010)
Angew. Chem., Int. Ed
, vol.49
, pp. 8408-8411
-
-
Yang, S.1
Feng, X.2
Ivanovici, S.3
Mullen, K.4
-
56
-
-
84857700599
-
Facile ultrasonic synthesis of CoO quantum dot-graphene nanosheet composites with high lithium storage capacity
-
Peng, C. et al. Facile ultrasonic synthesis of CoO quantum dot-graphene nanosheet composites with high lithium storage capacity. ACS Nano 6, 1074-1081 (2012).
-
(2012)
ACS Nano
, vol.6
, pp. 1074-1081
-
-
Peng, C.1
-
57
-
-
85034328134
-
4nanosheets
-
4nanosheets. Nanoscale 5, 6960-6967 (2013).
-
(2013)
Nanoscale
, vol.5
, pp. 6960-6967
-
-
Wang, R.1
-
58
-
-
0034727086
-
Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries
-
Poizot, P., Laruelle, S., Grugeon, S. & Tarascon, J. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496-499 (2000).
-
(2000)
Nature
, vol.407
, pp. 496-499
-
-
Poizot, P.1
Laruelle, S.2
Grugeon, S.3
Tarascon, J.4
-
59
-
-
84878343859
-
4 nanoparticles as a high-rate lithiumion battery anode material
-
4 nanoparticles as a high-rate lithiumion battery anode material. ACS Nano 7, 4459-4469 (2013).
-
(2013)
ACS Nano
, vol.7
, pp. 4459-4469
-
-
He, C.1
-
60
-
-
84878705212
-
4 nanosheets realizing enhanced lithium storage performance
-
4 nanosheets realizing enhanced lithium storage performance. Nanoscale 5, 5241-5246 (2013).
-
(2013)
Nanoscale
, vol.5
, pp. 5241-5246
-
-
Zhu, J.1
-
61
-
-
54949139227
-
Materials for electrochemical capacitors
-
Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 7, 845-854 (2008).
-
(2008)
Nat. Mater
, vol.7
, pp. 845-854
-
-
Simon, P.1
Gogotsi, Y.2
-
62
-
-
84885466873
-
Porous graphitic carbon nanosheets as a high-rate anode material for lithium-ion batteries
-
Chen, L. et al. Porous graphitic carbon nanosheets as a high-rate anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 5, 9537-9545 (2013).
-
(2013)
ACS Appl. Mater. Interfaces
, vol.5
, pp. 9537-9545
-
-
Chen, L.1
-
63
-
-
84873857536
-
Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: Synthesis and efficient lithium ion storage
-
Fang, Y. et al. Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage. J. Am. Chem. Soc. 135, 1524-1530 (2013).
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 1524-1530
-
-
Fang, Y.1
-
64
-
-
79952253431
-
4@graphene composites as anode materials for high-performance lithium ion batteries
-
4@graphene composites as anode materials for high-performance lithium ion batteries. Inorg. Chem. 50, 1628-1632 (2011).
-
(2011)
Inorg. Chem.
, vol.50
, pp. 1628-1632
-
-
Li, B.1
-
66
-
-
84899699044
-
4 nanorods and nanobelts and their excellent lithium storage performance
-
4 nanorods and nanobelts and their excellent lithium storage performance. Solid State Sci. 32, 88-93 (2014).
-
(2014)
Solid State Sci.
, vol.32
, pp. 88-93
-
-
Xing, L.1
Chen, Z.2
Xue, X.3
-
67
-
-
84873660860
-
4 fibers for high-performance lithium-ion batteries
-
4 fibers for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 5, 997-1002 (2013).
-
(2013)
ACS Appl. Mater. Interfaces
, vol.5
, pp. 997-1002
-
-
Yang, X.1
-
68
-
-
84900479437
-
4 nanowires on nickel foam directly as conductive agent- and binder-free anode for lithium ion batteries
-
4 nanowires on nickel foam directly as conductive agent- and binder-free anode for lithium ion batteries. Ceram. Int. 40, 11377-11380 (2014).
-
(2014)
Ceram. Int.
, vol.40
, pp. 11377-11380
-
-
Zheng, J.1
Zhang, B.2
-
70
-
-
78049330007
-
4-graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries
-
4-graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries. J. Mater. Chem. 20, 9735 (2010).
-
(2010)
J. Mater. Chem.
, vol.20
, pp. 9735
-
-
Chen, S.1
Wang, Y.2
|