-
1
-
-
17044365390
-
Energy scavenging for mobile and wireless electronics
-
Paradiso, J. A. & Starner, T. Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput. 4, 18-27 (2005)
-
(2005)
IEEE Pervasive Comput.
, vol.4
, pp. 18-27
-
-
Paradiso, J.A.1
Starner, T.2
-
2
-
-
77949910828
-
And characterization of an electromagnetic energy harvester for vehicle suspensions
-
Zuo, L., Scully, B., Shestani, J. & Zhou, Y. Design and characterization of an electromagnetic energy harvester for vehicle suspensions. Smart Mater. Struct. 19, 045003 (2010)
-
(2010)
Smart Mater. Struct.
, vol.19
, pp. 045003
-
-
Zuo, L.1
Scully, B.2
Shestani, J.3
Design, Z.Y.4
-
3
-
-
84931068922
-
Cylindrical halbach magnet array for electromagnetic vibration energy harvesters
-
Shahosseini, I. & Najafi, K. Cylindrical halbach magnet array for electromagnetic vibration energy harvesters. In 2015 28th IEEE Int. Conf. Micro Electro Mech. Syst. 1051-1054 (2015). doi: 10.1109/MEMSYS.2015.7051143
-
(2015)
2015 28th IEEE Int. Conf. Micro Electro Mech. Syst.
, pp. 1051-1054
-
-
Shahosseini, I.1
Najafi, K.2
-
4
-
-
44849122933
-
An electromagnetic micro power generator for wideband environmental vibrations
-
Sari, I., Balkan, T. & Kulah, H. An electromagnetic micro power generator for wideband environmental vibrations. Sensors Actuators, A Phys. 145-146, 405-413 (2008)
-
(2008)
Sensors Actuators, A Phys.
, vol.145-146
, pp. 405-413
-
-
Sari, I.1
Balkan, T.2
Kulah, H.3
-
5
-
-
84931084512
-
An electrostatic energy harvester exploiting variable-area water electrode by respiration
-
Seo, M., Choi, D., Han, C., Yoo, J. & Yoon, J. An electrostatic energy harvester exploiting variable-area water electrode by respiration. In 2015 28th IEEE Int. Conf. Micro Electro Mech. Syst. 126-129 (2015). doi: 10.1109/MEMSYS.2015.7050902
-
(2015)
2015 28th IEEE Int. Conf. Micro Electro Mech. Syst.
, pp. 126-129
-
-
Seo, M.1
Choi, D.2
Han, C.3
Yoo, J.4
Yoon, J.5
-
7
-
-
33747588746
-
Mems inertial power generators for biomedical applications
-
Miao, P. et al. Mems inertial power generators for biomedical applications. in Microsyst. Technol. 12, 1079-1083 (2006)
-
(2006)
Microsyst. Technol.
, vol.12
, pp. 1079-1083
-
-
Miao, P.1
-
8
-
-
39149112201
-
Microfibre-nanowire hybrid structure for energy scavenging
-
Qin, Y., Wang, X. & Wang, Z. L. Microfibre-nanowire hybrid structure for energy scavenging. Nature 451, 809-813 (2008)
-
(2008)
Nature
, vol.451
, pp. 809-813
-
-
Qin, Y.1
Wang, X.2
Wang, Z.L.3
-
9
-
-
84887819045
-
Piezoelectric nanogenerator with a nanoforest structure
-
Seol, M. L. et al. Piezoelectric nanogenerator with a nanoforest structure. Nano Energy 2, 1142-1148 (2013)
-
(2013)
Nano Energy
, vol.2
, pp. 1142-1148
-
-
Seol, M.L.1
-
11
-
-
33645810366
-
Piezoelectric nanogenerators based on zinc oxide nanowire arrays
-
Wang, Z. L. & Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242-246 (2006)
-
(2006)
Science
, vol.312
, pp. 242-246
-
-
Wang, Z.L.1
Song, J.2
-
12
-
-
84891359308
-
Design strategy for a piezoelectric nanogenerator with a well-ordered nanoshell array
-
Seol, M. L. et al. Design strategy for a piezoelectric nanogenerator with a well-ordered nanoshell array. ACS Nano 7, 10773-10779 (2013)
-
(2013)
ACS Nano
, vol.7
, pp. 10773-10779
-
-
Seol, M.L.1
-
13
-
-
84858142463
-
Flexible triboelectric generator
-
Fan, F. R., Tian, Z. Q. & Lin Wang, Z. Flexible triboelectric generator. Nano Energy 1, 328-334 (2012)
-
(2012)
Nano Energy
, vol.1
, pp. 328-334
-
-
Fan, F.R.1
Tian, Z.Q.2
Lin Wang, Z.3
-
14
-
-
84921509732
-
High-performance nanopattern triboelectric generator by block copolymer lithography
-
Kim, D. et al. High-performance nanopattern triboelectric generator by block copolymer lithography. Nano Energy 12, 331-338 (2015)
-
(2015)
Nano Energy
, vol.12
, pp. 331-338
-
-
Kim, D.1
-
15
-
-
84900013674
-
Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes
-
Wang, S., Xie, Y., Niu, S., Lin, L. & Wang, Z. L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 26, 2818-2824 (2014)
-
(2014)
Adv. Mater.
, vol.26
, pp. 2818-2824
-
-
Wang, S.1
Xie, Y.2
Niu, S.3
Lin, L.4
Wang, Z.L.5
-
16
-
-
84921796194
-
Robust Triboelectric Nanogenerator Based on Rolling Electrification and Electrostatic Induction at an Instantaneous Energy Conversion Efficiency of ∼ 55%
-
Lin, L. et al. Robust Triboelectric Nanogenerator Based on Rolling Electrification and Electrostatic Induction at an Instantaneous Energy Conversion Efficiency of ∼ 55%. ACS Nano 9, 922-930 (2015)
-
(2015)
ACS Nano
, vol.9
, pp. 922-930
-
-
Lin, L.1
-
17
-
-
85027947338
-
A Motion- and Sound-Activated, 3D-Printed, Chalcogenide-Based Triboelectric Nanogenerator
-
Kanik, M. et al. A Motion- and Sound-Activated, 3D-Printed, Chalcogenide-Based Triboelectric Nanogenerator. Adv. Mater. n/a-n/a (2015). doi: 10.1002/adma.201405944
-
(2015)
Adv. Mater. N/a-n/a
-
-
Kanik, M.1
-
18
-
-
84919924932
-
Hybrid energy cell for harvesting mechanical energy from one motion using two approaches
-
Wu, Y., Wang, X., Yang, Y. & Wang, Z. L. Hybrid energy cell for harvesting mechanical energy from one motion using two approaches. Nano Energy 11, 162-170 (2015)
-
(2015)
Nano Energy
, vol.11
, pp. 162-170
-
-
Wu, Y.1
Wang, X.2
Yang, Y.3
Wang, Z.L.4
-
19
-
-
84924177831
-
Triboelectric smart machine elements and self-powered encoder
-
Taghavi, M. et al. Triboelectric smart machine elements and self-powered encoder. Nano Energy (2015). doi: 10.1016/j.nanoen.2015.02.011
-
(2015)
Nano Energy
-
-
Taghavi, M.1
-
20
-
-
84923290515
-
Flutter-driven triboelectrification for harvesting wind energy
-
Bae, J. et al. Flutter-driven triboelectrification for harvesting wind energy. Nat. Commun. 5, 1-9 (2014)
-
(2014)
Nat. Commun.
, vol.5
, pp. 1-9
-
-
Bae, J.1
-
21
-
-
84904722255
-
Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves
-
Wen, X., Yang, W., Jing, Q. & Wang, Z. L. Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves. ACS Nano 8, 7405-7412 (2014)
-
(2014)
ACS Nano
, vol.8
, pp. 7405-7412
-
-
Wen, X.1
Yang, W.2
Jing, Q.3
Wang, Z.L.4
-
22
-
-
84908473121
-
Nature-replicated nano-in-micro structures for triboelectric energy harvesting
-
Seol, M.-L. et al. Nature-Replicated Nano-in-Micro Structures for Triboelectric Energy Harvesting. Small 10, 3887-3894 (2014)
-
(2014)
Small
, vol.10
, pp. 3887-3894
-
-
Seol, M.-L.1
-
23
-
-
84959483316
-
A triboelectric energy harvester using low-cost flexible, and biocompatible ethylene vinyl acetate (EVA)
-
Hassani, F. A. & Lee, C. A Triboelectric Energy Harvester Using Low-Cost, Flexible, and Biocompatible Ethylene Vinyl Acetate (EVA). J. Microelectromechanical Syst. 1-1 (2015). doi: 10.1109/JMEMS.2015.2403256
-
(2015)
J. Microelectromechanical Syst.
, pp. 1-1
-
-
Hassani, F.A.1
Lee, C.2
-
24
-
-
84924405198
-
β-Cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation
-
Li, Z. et al. β -cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation. Energy Environ. Sci. 8, 887-896 (2015)
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 887-896
-
-
Li, Z.1
-
25
-
-
84902324521
-
Transparent flexible graphene triboelectric nanogenerators
-
Kim, S. et al. Transparent flexible graphene triboelectric nanogenerators. Adv. Mater. 26, 3918-3925 (2014)
-
(2014)
Adv. Mater.
, vol.26
, pp. 3918-3925
-
-
Kim, S.1
-
26
-
-
84923007586
-
Self-cleaning hybrid energy harvester to generate power from raindrop and sunlight
-
Jeon, S.-B., Kim, D., Yoon, G.-W., Yoon, J.-B. & Choi, Y.-K. Self-cleaning hybrid energy harvester to generate power from raindrop and sunlight. Nano Energy 12, 636-645 (2015)
-
(2015)
Nano Energy
, vol.12
, pp. 636-645
-
-
Jeon, S.-B.1
Kim, D.2
Yoon, G.-W.3
Yoon, J.-B.4
Choi, Y.-K.5
-
27
-
-
84925688266
-
Networks of triboelectric nanogenerators for harvesting water wave energy: A potential approach toward blue energy
-
150226125919000
-
Chen, J. et al. Networks of Triboelectric Nanogenerators for Harvesting Water Wave Energy: A Potential Approach toward Blue Energy. ACS Nano 150226125919000 (2015). doi: 10.1021/acsnano.5b00534
-
(2015)
ACS Nano
-
-
Chen, J.1
-
28
-
-
84896920017
-
Triboelectri fi cation-based organic film nanogenerator for acoustic energy harvesting and self-powered
-
Yang, J. et al. Triboelectri fi cation-Based Organic Film Nanogenerator for Acoustic Energy Harvesting and Self-Powered. ACS Nano 2649-2657 (2014)
-
(2014)
ACS Nano
, pp. 2649-2657
-
-
Yang, J.1
-
29
-
-
84940047542
-
Vertically stacked thin triboelectric nanogenerator for wind energy harvesting
-
Seol, M.-L. et al. Vertically stacked thin triboelectric nanogenerator for wind energy harvesting. Nano Energy 14, 201-208 (2015)
-
(2015)
Nano Energy
, vol.14
, pp. 201-208
-
-
Seol, M.-L.1
-
30
-
-
84882610548
-
A hybrid energy cell for self-powered water splitting
-
Yang, Y. et al. A hybrid energy cell for self-powered water splitting. Energy Environ. Sci. 6, 2429 (2013)
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 2429
-
-
Yang, Y.1
-
31
-
-
84886787971
-
Triboelectric nanogenerator built inside clothes for self-powered glucose biosensors
-
Zhang, H. et al. Triboelectric nanogenerator built inside clothes for self-powered glucose biosensors. Nano Energy 2, 1019-1024 (2013)
-
(2013)
Nano Energy
, vol.2
, pp. 1019-1024
-
-
Zhang, H.1
-
32
-
-
84902254803
-
Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification
-
Zhu, G. et al. Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Lett. 14, 3208-3213 (2014)
-
(2014)
Nano Lett.
, vol.14
, pp. 3208-3213
-
-
Zhu, G.1
-
33
-
-
84878279584
-
Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified TiO2 nanomaterials
-
Lin, Z. H. et al. Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified TiO2 nanomaterials. ACS Nano 7, 4554-4560 (2013)
-
(2013)
ACS Nano
, vol.7
, pp. 4554-4560
-
-
Lin, Z.H.1
-
34
-
-
84907947808
-
Fabric-based integrated energy devices for wearable activity monitors
-
Jung, S., Lee, J., Hyeon, T., Lee, M. & Kim, D. H. Fabric-based integrated energy devices for wearable activity monitors. Adv. Mater. 6329-6334 (2014), doi: 10.1002/adma.201402439
-
(2014)
Adv. Mater.
, pp. 6329-6334
-
-
Jung, S.1
Lee, J.2
Hyeon, T.3
Lee, M.4
Kim, D.H.5
-
35
-
-
84921761054
-
Paper-based origami triboelectric nanogenerators and self-powered pressure sensors
-
Yang, P.-K. et al. Paper-Based Origami Triboelectric Nanogenerators and Self-Powered Pressure Sensors. ACS Nano 9, 901-907 (2015)
-
(2015)
ACS Nano
, vol.9
, pp. 901-907
-
-
Yang, P.-K.1
-
36
-
-
84939272212
-
Energy harvesting model of moving water inside tubular system and its application of stick type compact triboelectric nanogenerator
-
Choi, D. et al. Energy harvesting model of moving water inside tubular system and its application of stick type compact triboelectric nanogenerator. Nano Res. (2015), doi: 10.1007/s12274-015-0756-4
-
(2015)
Nano Res.
-
-
Choi, D.1
-
37
-
-
84908085608
-
Cover-sheet-based nanogenerator for charging mobile electronics using lowfrequency body motion/vibration
-
Tang, W., Han, C. B., Zhang, C. & Wang, Z. L. Cover-sheet-based nanogenerator for charging mobile electronics using lowfrequency body motion/vibration. Nano Energy 9, 121-127 (2014)
-
(2014)
Nano Energy
, vol.9
, pp. 121-127
-
-
Tang, W.1
Han, C.B.2
Zhang, C.3
Wang, Z.L.4
-
38
-
-
84892412567
-
Fully enclosed cylindrical single-electrode-based triboelectric nanogenerator
-
Su, Y. et al. Fully enclosed cylindrical single-electrode-based triboelectric nanogenerator. ACS Appl. Mater. Interfaces 6, 553-559 (2014)
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 553-559
-
-
Su, Y.1
-
39
-
-
84891367534
-
Harvesting energy from the natural vibration of human walking
-
Yang, W. et al. Harvesting energy from the natural vibration of human walking. ACS Nano 7, 11317-11324 (2013)
-
(2013)
ACS Nano
, vol.7
, pp. 11317-11324
-
-
Yang, W.1
-
40
-
-
84922748166
-
Spiral-interdigital-electrode-based multifunctional device: Dual-functional triboelectric generator and dualfunctional self-powered sensor
-
Guo, H. et al. Spiral-interdigital-electrode-based multifunctional device: Dual-functional triboelectric generator and dualfunctional self-powered sensor. Nano Energy 12, 626-635 (2015)
-
(2015)
Nano Energy
, vol.12
, pp. 626-635
-
-
Guo, H.1
-
41
-
-
84904722824
-
Hybridizing triboelectrification and electromagnetic-induction effects for high efficient mechanical energy harvesting
-
Hu, Y., Yang, J., Niu, S., Wu, W. & Wang, Z. L. Hybridizing Triboelectrification and Electromagnetic-Induction Effects for High Efficient Mechanical Energy Harvesting. ACS Nano 7442-7450 (2014), doi: 10.1021/nn502684f
-
(2014)
ACS Nano
, pp. 7442-7450
-
-
Hu, Y.1
Yang, J.2
Niu, S.3
Wu, W.4
Wang, Z.L.5
-
42
-
-
84904199302
-
3D stack integrated triboelectric nanogenerator for harvesting vibration energy
-
Yang, W. et al. 3D stack integrated triboelectric nanogenerator for harvesting vibration energy. Adv. Funct. Mater. 24, 4090-4096 (2014)
-
(2014)
Adv. Funct. Mater.
, vol.24
, pp. 4090-4096
-
-
Yang, W.1
-
43
-
-
84900475725
-
Broadband vibrational energy harvesting based on a triboelectric nanogenerator
-
Yang, J. et al. Broadband vibrational energy harvesting based on a triboelectric nanogenerator. Adv. Energy Mater. 4, 1-9 (2014)
-
(2014)
Adv. Energy Mater.
, vol.4
, pp. 1-9
-
-
Yang, J.1
-
44
-
-
84899430915
-
Case-encapsulated triboelectric nanogenerator for harvesting energy from reciprocating sliding motion
-
Jing, Q. et al. Case-encapsulated triboelectric nanogenerator for harvesting energy from reciprocating sliding motion. ACS Nano 8, 3836-3842 (2014)
-
(2014)
ACS Nano
, vol.8
, pp. 3836-3842
-
-
Jing, Q.1
-
45
-
-
84896774466
-
Triboelectric nanogenerator for harvesting vibration energy in full space and as self-powered acceleration sensor
-
Zhang, H. et al. Triboelectric nanogenerator for harvesting vibration energy in full space and as self-powered acceleration sensor. Adv. Funct. Mater. 24, 1401-1407 (2014)
-
(2014)
Adv. Funct. Mater.
, vol.24
, pp. 1401-1407
-
-
Zhang, H.1
-
46
-
-
84887481607
-
Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor
-
Chen, J. et al. Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Adv. Mater. 25, 6094-6099 (2013)
-
(2013)
Adv. Mater.
, vol.25
, pp. 6094-6099
-
-
Chen, J.1
-
47
-
-
44349187381
-
Electrostatic charging due to separation of ions at interfaces: Contact electrification of ionic electrets
-
McCarty, L. S. & Whitesides, G. M. Electrostatic charging due to separation of ions at interfaces: Contact electrification of ionic electrets. Angew. Chemie - Int. Ed. 47, 2188-2207 (2008)
-
(2008)
Angew. Chemie - Int. Ed.
, vol.47
, pp. 2188-2207
-
-
McCarty, L.S.1
Whitesides, G.M.2
-
48
-
-
0032637821
-
Deposition of anti-adhesive ultra-thin teflon-like films and their interaction with polymers during hot embossing
-
Jaszewski, R. W., Schift, H., Schnyder, B., Schneuwly, A. & Gröning, P. Deposition of anti-adhesive ultra-thin teflon-like films and their interaction with polymers during hot embossing. Appl. Surf. Sci. 143, 301-308 (1999)
-
(1999)
Appl. Surf. Sci.
, vol.143
, pp. 301-308
-
-
Jaszewski, R.W.1
Schift, H.2
Schnyder, B.3
Schneuwly, A.4
Gröning, P.5
-
49
-
-
84888868810
-
Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors
-
Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. Faraday Discuss. 7, 9533-9557 (2013)
-
(2013)
Faraday Discuss.
, vol.7
, pp. 9533-9557
-
-
Wang, Z.L.1
-
50
-
-
84884328432
-
Effect of humidity and pressure on the triboelectric nanogenerator
-
Nguyen, V. & Yang, R. Effect of humidity and pressure on the triboelectric nanogenerator. Nano Energy 2, 604-608 (2013)
-
(2013)
Nano Energy
, vol.2
, pp. 604-608
-
-
Nguyen, V.1
Yang, R.2
-
51
-
-
70349861895
-
Controlled growth of aligned polymer nanowires
-
Fang, H., Wu, W., Song, J. & Wang, Z. L. Controlled growth of aligned polymer nanowires. J. Phys. Chem. C 113, 16571-16574 (2009)
-
(2009)
J. Phys. Chem C
, vol.113
, pp. 16571-16574
-
-
Fang, H.1
Wu, W.2
Song, J.3
Wang, Z.L.4
|